

Wireshark®	101
Essential	Skills	for	Network	Analysis
1st	Edition

Always	ensure	you	have	proper	authorization	before	you	listen	to	and	capture	network	traffic.

Protocol	Analysis	Institute,	Inc
5339	Prospect	Road,	#	343
San	Jose,	CA	95129	USA
www.packet-level.com

Chappell	University
info@chappellU.com
www.chappellU.com

Copyright	2013,	Protocol	Analysis	Institute,	Inc.,	dba	Chappell	University.	All	rights	reserved.	No	part	of
this	Student	Manual,	or	related	materials,	including	interior	design,	cover	design,	and	contents	of	the	book
web	site,	www.wiresharkbook.com,	may	be	reproduced	or	transmitted	in	any	form,	by	any	means
(electronic,	photocopying,	recording,	or	otherwise)	without	the	prior	written	permission	of	the	publisher.

To	arrange	bulk	purchase	discounts	for	sales	promotions,	events,	training	courses,	or	other	purposes,
please	contact	Chappell	University	via	email	(info@wiresharkbook.com),	phone	(1-408-378-7841),	or
mail	(5339	Prospect	Road,	#343,	San	Jose,	CA	95129).

Book	URL:	www.wiresharkbook.com
13-digit	ISBN:	978-1-893939-73-8
10-digit	ISBN:	1-893939-73-1

(Version	1.0a)

Distributed	worldwide	for	Chappell	University	through	Protocol	Analysis	Institute,	Inc.	Protocol
Analysis	Institute,	Inc.	is	the	exclusive	educational	materials	developer	for	Chappell	University.

For	general	information	on	Chappell	University	or	Protocol	Analysis	Institute,	Inc.,	including	information
on	corporate	licenses,	updates,	future	titles,	or	courses,	contact	the	Protocol	Analysis	Institute,	Inc.,	at
408/378-7841	or	send	email	to	info@wiresharkbook.com.

For	authorization	to	photocopy	items	for	corporate,	personal,	or	educational	use,	contact	Protocol
Analysis	Institute,	Inc.,	at	info@wiresharkbook.com.

Trademarks.	All	brand	names	and	product	names	used	in	this	book	or	mentioned	in	this	course	are	trade
names,	service	marks,	trademarks,	or	registered	trademarks	of	their	respective	owners.	Wireshark	and	the
"fin"	logo	are	registered	trademarks	of	the	Wireshark	Foundation.

http://www.wiresharkbook.com/
mailto:info@wiresharkbook.com
mailto:info@wiresharkbook.com
mailto:info@wiresharkbook.com

Limit	of	Liability/Disclaimer	of	Warranty.	The	author	and	publisher	have	used	their	best	efforts	in
preparing	this	book	and	the	related	materials	used	in	this	book.	Protocol	Analysis	Institute,	Inc.,	Chappell
University,	and	the	author(s)	make	no	representations	or	warranties	of	merchantability	of	fitness	for	a
particular	purpose.	Protocol	Analysis	Institute,	Inc.,	and	Chappell	University	assume	no	liability	for	any
damages	caused	by	following	the	instructions	or	using	the	techniques	or	tools	listed	in	this	book	or	related
materials	used	in	this	book.	Protocol	Analysis	Institute,	Inc.,	Chappell	University,	and	the	author(s)	make
no	representations	or	warranties	that	extend	beyond	the	descriptions	contained	in	this	paragraph.	No
warranty	may	be	created	or	extended	by	sales	representatives	or	written	sales	materials.	The	accuracy	or
completeness	of	the	information	provided	herein	and	the	opinions	stated	herein	are	not	guaranteed	or
warranted	to	produce	any	particular	result	and	the	advice	and	strategies	contained	herein	may	not	be
suitable	for	every	individual.	Protocol	Analysis	Institute,	Inc.,	Chappell	University,	and	author(s)	shall
not	be	liable	for	any	loss	of	profit	or	any	other	damages,	including	without	limitation,	special,	incidental,
consequential,	or	other	damages.

Copy	Protection.	In	all	cases,	reselling	or	duplication	of	this	book	and	related	materials	used	in	this
training	course	without	explicit	written	authorization	is	expressly	forbidden.	We	will	find	you,	ya	know.
So	don't	steal	or	plagiarize	this	book.

Acknowledgments
There	are	many	people	who	were	directly	and	indirectly	involved	in	building	the	concept	of	this	lab-
based	book,	hashing	out	the	Table	of	Contents,	reviewing	the	chapters,	and	testing	the	labs.	Your	time	and
patience	(through	never-ending	revisions	and	updates)	is	truly	appreciated.

Lanell	Allen
Jim	Aragon
Brenda	Cardinal
Tobias	Clary
Gerald	Combs
Joy	DeManty
John	Gonder
Jennifer	Keels
Kayla	Smith
John	Wright

I	would	especially	like	to	thank	Jim	Aragon	for	his	meticulous	technical	and	grammatical	expertise.	Jim,
you	are	my	"style	guru!"	<grin>

Special	thanks	to	the	following	individuals	who	offered	encouraging	quotes	for	readers	beginning	their
Wireshark	journey	or	honing	their	skills	with	this	book.

Lanell	Allen,	Wireshark	Certified	Network	Analyst™
Richard	Bejtlich,	Chief	Security	Officer,	Mandiant
Sake	Blok,	Wireshark	Core	Developer	and	SYN-bit	Founder
Anders	Broman,	Wireshark	Core	Developer	and	System	Tester	at	Ericsson
Loris	Degioanni,	Creator	of	WinPcap	and	Cascade	Pilot®
Betty	DuBois,	Chief	Detective	of	Network	Detectives	and	Certified	Wireshark	University	Instructor
Tony	Fortunato,	Senior	Network	Performance	Specialist,	The	Technology	Firm
Lionel	Gentil,	iTunes	Software	Reliability	Engineer,	Apple,	Inc.
John	Gonder,	Cisco	Academy	Director,	Las	Positas	College
Jennifer	Keels,	CNP-S,	CEH,	Network	Engineer
Gordon	"Fyodor"	Lyon,	Founder	of	the	open	source	Nmap	Security	Scanner	project
Steven	McCanne,	CTO	and	Executive	Vice	President,	Riverbed

As	always,	my	sincere	thanks	to	the	Wireshark	Core	Developers	who	have	built	Wireshark	into	an
indispensable	tool.	The	current	list	of	core	developers	can	be	found	at	wiki.wireshark.org/Developers.

If	I've	missed	anyone	in	this	acknowledgments	section,	I	apologize	sincerely.

http://wiki.wireshark.org/Developers

Dedication
This	book	is	dedicated	to	Ginny	and	Scott.	Thanks	for	keeping	me	laughing!

Oh...	and	special	thanks	to	my	Mom	(who	just	asked	"Am	I	in	the	new	book?").	Here	you	are,	Mom.
Jeez...	subtle	<grin>.

Now	that	I've	mentioned	my	Mom,	I'd	better	keep	the	peace	in	the	family	by	thanking	my	Dad	(likely	the
topic	of	another	book	someday).

About	this	Book

Who	is	this	Book	For?
This	book	is	written	for	beginner	analysts.	This	book	provides	an	ideal	starting	point	whether	you	are
interested	in	analyzing	traffic	to	learn	how	an	application	works,	you	need	to	troubleshoot	slow	network
performance,	or	determine	whether	a	machine	is	infected	with	malware.

Learning	to	capture	and	analyze	communications	with	Wireshark	will	help	you	really	understand	how
TCP/IP	networks	function.	As	the	most	popular	network	analyzer	tool	in	the	world,	the	time	you	spend
honing	your	skills	with	Wireshark	will	pay	off	when	you	read	technical	specs,	marketing	materials,
security	briefings,	and	more.

This	book	can	also	be	used	by	current	analysts	who	need	to	practice	the	skills	contained	in	this	book.

In	essence,	this	book	is	for	anyone	who	really	wants	to	know	what's	happening	on	their	network.		

What	Prerequisite	Knowledge	do	I	Need?
Before	you	delve	into	this	book	(or	network	analysis	in	general),	you	should	have	a	solid	understanding	of
basic	network	concepts	and	TCP/IP	fundamentals.	For	example,	you	should	know	the	purpose	of	a	switch,
a	router,	and	a	firewall.	You	should	be	familiar	with	the	concepts	of	Ethernet	networking,	basic	wireless
networking,	and	be	comfortable	with	IP	network	addressing,	as	well.

There	are	a	few	spots	in	this	book	where	you	will	need	to	access	the	command	prompt	to	set	a	path	to	an
application	directory	or	to	run	basic	command-line	tools	such	as	ipconfig/ifconfig,	ping,	or	trace	route.
If	you	are	unfamiliar	with	these	tools,	there	are	plenty	of	resources	on	the	Internet	to	show	you	how	they
work	on	various	platforms.

You	will	find	a	Network	Analyst's	Glossary	at	the	back	of	the	book.	This	glossary	covers	many	of	the
terms	and	technology	mentioned	in	the	book.	For	example,	if	you	aren't	familiar	with	WinPcap	when	it's
discussed	in	the	book,	just	flip	to	the	Network	Analyst's	Glossary	to	learn	more.

What	Version	of	Wireshark	does	this	Book	Cover?
This	book	was	written	using	several	Wireshark	1.8.x	versions	and	the	development	version	of
Wireshark	1.9.x	(which	is	the	development	version	leading	to	Wireshark	1.10).	Several	key	features	were
added	during	the	development	of	Wireshark	1.9.x	including	new	name	resolution	configuration	options
and	packet	comment	exporting.	These	features	are	documented	in	this	book	where	appropriate.

Where	Can	I	Get	the	Book	Trace	Files?
Probably	your	first	step	should	be	to	download	the	book	trace	files	and	other	supplemental	files	from
www.wiresharkbook.com.	Click	the	Wireshark	101	book	link	and	download	the	entire	set	of	supplemental
files.	You	should	follow	along	with	each	of	the	labs	to	practice	the	skills	covered	in	each	section.

If	you	have	questions	regarding	the	book	or	the	book	web	site,	please	send	them	to
info@wiresharkbook.com.

http://www.wiresharkbook.com/
mailto:info@wiresharkbook.com

Where	Can	I	Learn	More	about	Wireshark	and	Network	Analysis?
Download	or	watch	Laura's	free	four-part	Wireshark	101	course	online	at	the	All	Access	Pass	portal
(www.lcuportal2.com).

At	the	end	of	this	book,	we've	included	a	$100	discount	code	for	a	one-year	All	Access	Pass	training
subscription.	The	All	Access	Pass	offers	live	and	recorded	online	training	on	Wireshark,	TCP/IP
communications,	troubleshooting,	security	and	more.		

For	more	information	on	the	All	Access	Pass	and	other	training	options,	visit	Chappell	University	at
www.chappellU.com.

http://www.lcuportal2.com/
http://www.chappellu.com/

Foreword	by	Gerald	Combs

Gerald	Combs

What's	happening	on	the	network?

This	is	one	of	those	small	questions	with	large	answers.	For	many	people	it's	an	important	question,
particularly	when	network	problems	impact	lives	and	livelihoods.

The	first	time	I	saw	someone	analyze	a	network	they	used	an	oscilloscope.	It	was	the	1980s	and	network
analysis	tools	were	scarce.	I	blame	hair	bands.

The	oscilloscope	was	all	we	had	on	hand	in	our	university	lab	and	it	showed	us	the	square–ish	electrical
pulses	that	bounced	up	and	down	and	made	up	the	Ethernet	frames	flying	around	our	network.	It	was	a
very	narrow,	limited	view	of	the	network,	but	it	was	fascinating.

A	few	years	later	at	a	different	university	I	had	to	troubleshoot	the	network	for	our	IT	department.	By	then
we	had	better	tools	such	as	tcpdump	and	a	Sniffer	which	gave	us	packets	instead	of	pulses.	It	was	still
daunting	at	first	because	our	network	was	a	zoo	of	different	technologies:	Ethernet,	FDDI,	token	ring,	IPX,
DECnet,	IP,	AppleTalk,	and	more.

It	didn't	make	much	sense	at	first,	but	it	was	still	fascinating.	You	could	see	what	was	in	each	message
going	across	the	network	along	with	all	the	clever	methods	that	people	had	devised	to	let	computers	talk
to	each	other.	That	fascination	turned	into	a	passion	which	is	still	going	strong.

Later	on	I	had	to	answer	the	question,	"What's	happening	on	the	network?"	at	an	ISP.	The	nice	tools	to
which	I	had	grown	accustomed	were	unavailable	and	I	felt	blind.

I	started	writing	a	protocol	analyzer	and	released	it	as	an	open	source	application.	Thanks	to
contributions	from	an	amazingly	talented	team	of	developers	and	users,	it	grew	into	the	world's	most
popular	protocol	analyzer.

I	think	everyone	should	have	a	fundamental	understanding	of	computer	networks.	They	are	a	vital	part	of
modern	society,	and	as	such	it's	important	to	know	how	they	work.

It's	also	important	to	know	that	Wireshark	won't	give	you	this	understanding	by	itself—no	tool	will.
Fortunately	Wireshark	has	a	vibrant	ecosystem	that	surrounds	it,	from	the	development	team,	to	the	user
community,	to	companies	that	offer	Wireshark-related	products	and	services	(including	my	employer),	and
to	instructors	like	Laura.	The	ecosystem	is	an	amazing	collection	of	people	who	are	keenly	interested	in
protocol	analysis	and	equally	interested	in	helping	each	other.	It	is	an	honor	to	be	part	of	it.

Networks	may	not	make	a	lot	of	sense	at	first	(they	didn't	for	me),	but	that's	OK.	Laura	can	help	you
understand	how	they	work	(and	how	they	often	don't).	She	can	give	you	the	understanding	you	need	to	get
the	most	out	of	Wireshark.

What's	happening	on	your	network?

Gerald	Combs
Creator	of	Wireshark®	(formerly	Ethereal)

Table	of	Contents
Acknowledgments
Dedication
About	this	Book
Who	is	this	Book	For?
What	Prerequisite	Knowledge	do	I	Need?
What	Version	of	Wireshark	does	this	Book	Cover?
Where	Can	I	Get	the	Book	Trace	Files?
Where	Can	I	Learn	More	about	Wireshark	and	Network	Analysis?
Foreword	by	Gerald	Combs

Chapter	0	Skills:	Explore	Key	Wireshark	Elements	and	Traffic	Flows
Quick	Reference:	Key	Wireshark	Graphical	Interface	Elements
0.1	Understand	Wireshark's	Capabilities
General	Analysis	Tasks
Troubleshooting	Tasks
Security	Analysis	(Network	Forensics)	Tasks
Application	Analysis	Tasks
0.2	Get	the	Right	Wireshark	Version
0.3	Learn	how	Wireshark	Captures	Traffic
The	Capture	Process	Relies	on	Special	Link-Layer	Drivers
The	Dumpcap	Capture	Engine	Defines	Stop	Conditions
The	Core	Engine	is	the	Goldmine
The	Graphical	Toolkit	Provides	the	User	Interface
The	Wiretap	Library	is	Used	to	Open	Saved	Trace	Files
0.4	Understand	a	Typical	Wireshark	Analysis	Session
0.5	Differentiate	a	Packet	from	a	Frame
Recognize	a	Frame
Recognize	a	Packet
Recognize	a	Segment
0.6	Follow	an	HTTP	Packet	through	a	Network
Point	1:	What	Would	You	See	at	the	Client?
Point	2:	What	Would	You	See	on	the	Other	Side	of	the	First	Switch?
Point	3:	What	Would	You	See	on	the	Other	Side	of	the	Router?
Point	4:	What	Would	You	See	on	the	Other	Side	of	the	Router/NAT	Device?
Point	5:	What	Would	You	See	at	the	Server?
Where	You	Capture	Traffic	Matters
Beware	of	Default	Switch	Forwarding
0.7	Access	Wireshark	Resources
Use	the	Wireshark	Wiki	Protocol	Pages
Get	Your	Questions	Answered	at	ask.wireshark.org
0.8	Analyze	Traffic	Using	the	Main	Wireshark	View
Open	a	Trace	File	(Using	the	Main	Toolbar,	Please)
Know	When	You	Must	Use	the	Main	Menu
Learn	to	Use	the	Main	Toolbar	Whenever	Possible
Master	the	Filter	Toolbar
Summarize	the	Traffic	Using	the	Packet	List	Pane
Dig	Deeper	in	the	Packet	Details	Pane
Get	Geeky	in	the	Packet	Bytes	Pane
Pay	Attention	to	the	Status	Bar
	Lab	1:	Use	Packets	to	Build	a	Picture	of	a	Network

0.9	Analyze	Typical	Network	Traffic
Analyze	Web	Browsing	Traffic
Analyze	Sample	Background	Traffic
	Lab	2:	Capture	and	Classify	Your	Own	Background	Traffic

0.10	Open	Trace	Files	Captured	with	Other	Tools
	Lab	3:	Open	a	Network	Monitor	.cap	File

Chapter	0	Challenge

Chapter	1	Skills:	Customize	Wireshark	Views	and	Settings
Quick	Reference:	Overview	of	wireshark.org
1.1	Add	Columns	to	the	Packet	List	Pane
Right-Click	|	Apply	as	Column	(the	"easy	way")
Edit	|	Preferences	|	Columns	(the	"hard	way")
Hide,	Remove,	Rearrange,	Realign,	and	Edit	Columns
Sort	Column	Contents
Export	Column	Data
	Lab	4:	Add	the	HTTP	Host	Field	as	a	Column

1.2	Dissect	the	Wireshark	Dissectors
The	Frame	Dissector
The	Ethernet	Dissector	Takes	Over
The	IPv4	Dissector	Takes	Over
The	TCP	Dissector	Takes	Over
The	HTTP	Dissector	Takes	Over
1.3	Analyze	Traffic	that	Uses	Non-Standard	Port	Numbers
When	the	Port	Number	is	Assigned	to	Another	Application
Manually	Force	a	Dissector	on	the	Traffic
When	the	Port	Number	is	not	Recognized
How	Heuristic	Dissectors	Work
Adjust	Dissections	with	the	Application	Preference	Settings	(if	possible)
	Lab	5:	Configure	Wireshark	to	Dissect	Port	81	Traffic	as	HTTP

1.4	Change	how	Wireshark	Displays	Certain	Traffic	Types
Set	User	Interface	Settings
Set	Name	Resolution	Settings
Define	Filter	Expression	Buttons
Set	Protocol	and	Application	Settings
	Lab	6:	Set	Key	Wireshark	Preferences	(IMPORTANT	LAB)

1.5	Customize	Wireshark	for	Different	Tasks	(Profiles)
The	Basics	of	Profiles
Create	a	New	Profile
	Lab	7:	Create	a	New	Profile	Based	on	the	Default	Profile

1.6	Locate	Key	Wireshark	Configuration	Files
Your	Global	Configuration	Directory
Your	Personal	Configuration	(and	profiles)	Directory
	Lab	8:	Import	a	DNS/HTTP	Errors	Profile

1.7	Configure	Time	Columns	to	Spot	Latency	Problems
The	Indications	and	Causes	of	Path	Latency
The	Indications	and	Causes	of	Client	Latency
The	Indications	and	Causes	of	Server	Latency
Detect	Latency	Problems	by	Changing	the	Time	Column	Setting
Detect	Latency	Problems	with	a	New	TCP	Delta	Column
Don't	Get	Fooled—Some	Delays	are	Normal
	Lab	9:	Spot	Path	and	Server	Latency	Problems

Chapter	1	Challenge

Chapter	2	Skills:	Determine	the	Best	Capture	Method	and	Apply
Capture	Filters

Quick	Reference:	Capture	Options
2.1	Identify	the	Best	Capture	Location	to	Troubleshoot	Slow	Browsing	or	File	Downloads
The	Ideal	Starting	Point
Move	if	Necessary
2.2	Capture	Traffic	on	Your	Ethernet	Network
2.3	Capture	Traffic	on	Your	Wireless	Network
What	can	Your	Native	WLAN	Adapter	See?
Use	an	AirPcap	Adapter	for	Full	WLAN	Visibility
2.4	Identify	Active	Interfaces
Determine	Which	Adapter	Sees	Traffic
Consider	Using	Multi-Adapter	Capture
2.5	Deal	with	TONS	of	Traffic
Why	are	You	Seeing	So	Much	Traffic?
This	is	the	Best	Reason	to	Use	Capture	Filters
Capture	to	a	File	Set
Open	and	Move	around	in	File	Sets
Consider	a	Different	Solution—Cascade	Pilot®
	Lab	10:	Capture	to	File	Sets

2.6	Use	Special	Capture	Techniques	to	Spot	Sporadic	Problems
Use	File	Sets	and	the	Ring	Buffer
Stop	When	Complaints	Arise
	Lab	11:	Use	a	Ring	Buffer	to	Conserve	Drive	Space

2.7	Reduce	the	Amount	of	Traffic	You	have	to	Work	With
Detect	When	Wireshark	Can't	Keep	Up
Detect	when	a	Spanned	Switch	Can't	Keep	Up
Apply	a	Capture	Filter	in	the	Capture	Options	Window
2.8	Capture	Traffic	based	on	Addresses	(MAC/IP)
Capture	Traffic	to	or	from	a	Specific	IP	Address
Capture	Traffic	to	or	from	a	Range	of	IP	Addresses
Capture	Traffic	to	Broadcast	or	Multicast	Addresses
Capture	Traffic	based	on	a	MAC	Address
	Lab	12:	Capture	Only	Traffic	to	or	from	Your	IP	Address
	Lab	13:	Capture	Only	Traffic	to	or	from	Everyone	Else's	MAC	Address

2.9	Capture	Traffic	for	a	Specific	Application
It's	all	About	the	Port	Numbers
Combine	Port-based	Capture	Filters
2.10	Capture	Specific	ICMP	Traffic
	Lab	14:	Create,	Save	and	Apply	a	DNS	Capture	Filter

Chapter	2	Challenge

Chapter	3	Skills:	Apply	Display	Filters	to	Focus	on	Specific	Traffic
Quick	Reference:	Display	Filter	Area
3.1	Use	Proper	Display	Filter	Syntax
The	Syntax	of	the	Simplest	Display	Filters
Use	the	Display	Filter	Error	Detection	Mechanism
Learn	the	Field	Names
Use	Auto-Complete	to	Build	Display	Filters
Display	Filter	Comparison	Operators
Use	Expressions	to	Build	Display	Filters
	Lab	15:	Use	Auto-Complete	to	Find	Traffic	to	a	Specific	HTTP	Server

3.2	Edit	and	Use	the	Default	Display	Filters
	Lab	16:	Use	a	Default	Filter	as	a	"Seed"	for	a	New	Filter

3.3	Filter	Properly	on	HTTP	Traffic
Test	an	Application	Filter	Based	on	a	TCP	Port	Number
Be	Cautious	Using	a	TCP-based	Application	Name	Filter
	Lab	17:	Filter	on	HTTP	Traffic	the	Right	Way

3.4	Determine	Why	Your	dhcp	Display	Filter	Doesn't	Work
3.5	Apply	Display	Filters	based	on	an	IP	Address,	Range	of	Addresses,	or	Subnet
Filter	on	Traffic	to	or	from	a	Single	IP	Address	or	Host
Filter	on	Traffic	to	or	from	a	Range	of	Addresses
Filter	on	Traffic	to	or	from	an	IP	Subnet
	Lab	18:	Filter	on	Traffic	to	or	from	Online	Backup	Subnets

3.6	Quickly	Filter	on	a	Field	in	a	Packet
Work	Quickly—Use	Right-Click	|	Apply	as	Filter
Be	Creative	with	Right-Click	|	Prepare	a	Filter
Right-Click	Again	to	use	the	"..."	Filter	Enhancements
	Lab	19:	Filter	on	DNS	Name	Errors	or	HTTP	404	Responses

3.7	Filter	on	a	Single	TCP	or	UDP	Conversation
Use	Right-Click	to	Filter	on	a	Conversation
Use	Right-Click	to	Follow	a	Stream
Filter	on	a	Conversation	from	Wireshark	Statistics
Filter	on	a	TCP	Conversation	Based	on	the	Stream	Index	Field
	Lab	20:	Detect	Background	File	Transfers	on	Startup

3.8	Expand	Display	Filters	with	Multiple	Include	and	Exclude	Conditions
Use	Logical	Operators
Why	didn't	my	ip.addr	!=	filter	work?
Why	didn't	my	!tcp.flags.syn==1	filter	work?
3.9	Use	Parentheses	to	Change	Filter	Meaning
	Lab	21:	Locate	TCP	Connection	Attempts	to	a	Client

3.10	Determine	Why	Your	Display	Filter	Area	is	Yellow
Red	Background:	Syntax	Check	Failed
Green	Background:	Syntax	Check	Passed
Yellow	Background:	Syntax	Check	Passed	with	a	Warning	(!=)
3.11	Filter	on	a	Keyword	in	a	Trace	File
Use	contains	in	a	Simple	Keyword	Filter	through	an	Entire	Frame
Use	contains	in	a	Simple	Keyword	Filter	based	on	a	Field

Use	matches	and	(?i)	in	a	Keyword	Filter	for	Upper	Case	or	Lower	Case	Strings
Use	matches	for	a	Multiple-Word	Search
	Lab	22:	Filter	to	Locate	a	Set	of	Key	Words	in	a	Trace	File

3.12	Use	Wildcards	in	Your	Display	Filters
Use	Regex	with	"."
Setting	a	Variable	Length	Repeating	Wildcard	Character	Search
	Lab	23:	Filter	with	Wildcards	between	Words

3.13	Use	Filters	to	Spot	Communication	Delays
Filter	on	Large	Delta	Times	(frame.time_delta)
Filter	on	Large	TCP	Delta	Times	(tcp.time_delta)
	Lab	24:	Import	Display	Filters	into	a	Profile

3.14	Turn	Your	Key	Display	Filters	into	Buttons
Create	a	Filter	Expression	Button
Edit,	Reorder,	Delete,	and	Disable	Filter	Expression	Buttons
Edit	the	Filter	Expression	Area	in	Your	preferences	File
	Lab	25:	Create	and	Import	HTTP	Filter	Expression	Buttons

Chapter	3	Challenge

Chapter	4	Skills:	Color	and	Export	Interesting	Packets
Quick	Reference:	Coloring	Rules	Interface
4.1	Identify	Applied	Coloring	Rules
	Lab	26:	Add	a	Column	to	Display	Coloring	Rules	in	Use

4.2	Turn	Off	the	Checksum	Error	Coloring	Rule
Disable	Individual	Coloring	Rules
Disable	All	Packet	Coloring
4.3	Build	a	Coloring	Rule	to	Highlight	Delays
Create	a	Coloring	Rule	from	Scratch
Use	the	Right-Click	Method	to	Create	a	Coloring	Rule
	Lab	27:	Build	a	Coloring	Rule	to	Highlight	FTP	User	Names,	Passwords,	and	More

4.4	Quickly	Colorize	a	Single	Conversation
Right-Click	to	Temporarily	Colorize	a	Conversation
Remove	Temporary	Coloring
	Lab	28:	Create	Temporary	Conversation	Coloring	Rules

4.5	Export	Packets	that	Interest	You
	Lab	29:	Export	a	Single	TCP	Conversation

4.6	Export	Packet	Details
Export	Packet	Dissections
Define	What	should	be	Exported
Sample	Text	Output
Sample	CSV	Output
	Lab	30:	Export	a	List	of	HTTP	Host	Field	Values	from	a	Trace	File

Chapter	4	Challenge8

Chapter	5	Skills:	Build	and	Interpret	Tables	and	Graphs
Quick	Reference:	IO	Graph	Interface
5.1	Find	Out	Who's	Talking	to	Whom	on	the	Network
Check	Out	Network	Conversations
Quickly	Filter	on	Conversations
5.2	Locate	the	Top	Talkers
Sort	to	Find	the	Most	Active	Conversation
Sort	to	Find	the	Most	Active	Host
	Lab	31:	Filter	on	the	Most	Active	TCP	Conversation
	Lab	32:	Set	up	GeoIP	to	Map	Targets	Globally

5.3	List	Applications	Seen	on	the	Network
View	the	Protocol	Hierarchy
Right-Click	Filter	or	Colorize	any	Listed	Protocol	or	Application
Look	for	Suspicious	Protocols,	Applications	or	"Data"
Decipher	the	Protocol	Hierarchy	Percentages
	Lab	33:	Detect	Suspicious	Protocols	or	Applications

5.4	Graph	Application	and	Host	Bandwidth	Usage
Export	the	Application	or	Host	Traffic	before	Graphing
Apply	ip.addr	Display	Filters	to	the	IO	Graph
Apply	ip.src	Display	Filters	to	the	IO	Graph
Apply	tcp.port	or	udp.port	Display	Filters	to	the	IO	Graph
	Lab	34:	Compare	Traffic	to/from	a	Subnet	to	Other	Traffic

5.5	Identify	TCP	Errors	on	the	Network
Use	the	Expert	Infos	Button	on	the	Status	Bar
Deal	with	"Unreassembled"	Indications	in	the	Expert
Filter	on	TCP	Analysis	Flag	Packets232
5.6	Understand	what	those	Expert	Infos	Errors	Mean
Packet	Loss,	Recovery,	and	Faulty	Trace	Files
Asynchronous	or	Multiple	Path	Indications
Keep-Alive	Indication
Receive	Buffer	Congestion	Indications
TCP	Connection	Port	Reuse	Indication
Possible	Router	Problem	Indication
Misconfiguration	or	ARP	Poisoning	Indication
	Lab	35:	Identify	an	Overloaded	Client

5.7	Graph	Various	Network	Errors
Graph	all	TCP	Analysis	Flag	Packets	(Except	Window	Updates)
Graph	Separate	Types	of	TCP	Analysis	Flag	Packets
	Lab	36:	Detect	and	Graph	File	Transfer	Problems

Chapter	5	Challenge

Chapter	6	Skills:	Reassemble	Traffic	for	Faster	Analysis
Quick	Reference:	File	and	Object	Reassembly	Options
6.1	Reassemble	Web	Browsing	Sessions
Use	Follow	TCP	Stream
Use	Find,	Save,	and	Filter	on	a	Stream
	Lab	37:	Use	Reassembly	to	Find	a	Web	Site's	Hidden	HTTP	Message

6.2	Reassemble	a	File	Transferred	via	FTP
	Lab	38:	Extract	a	File	from	an	FTP	File	Transfer

6.3	Export	HTTP	Objects	Transferred	in	a	Web	Browsing	Session
Check	Your	TCP	Preference	Settings	First!
View	all	HTTP	Objects	in	the	Trace	File
	Lab	39:	Carve	Out	an	HTTP	Object	from	a	Web	Browsing	Session

Chapter	6	Challenge

Chapter	7	Skills:	Add	Comments	to	Your	Trace	Files	and	Packets
Quick	Reference:	File	and	Packet	Annotation	Options
7.1	Add	Your	Comments	to	Trace	Files
7.2	Add	Your	Comments	to	Individual	Packets
Use	the	.pcapng	Format	for	Annotations
Add	a	Comment	Column	for	Faster	Viewing
	Lab	40:	Read	Analysis	Notes	in	a	Malicious	Redirection	Trace	File

7.3	Export	Packet	Comments	for	a	Report
First,	Filter	on	Packets	that	Contain	Comments
Next,	Export	Packet	Dissections	as	Plain	Text
	Lab	41:	Export	Malicious	Redirection	Packet	Comments

Chapter	7	Challenge

Chapter	8	Skills:	Use	Command-Line	Tools	to	Capture,	Split,	and
Merge	Traffic

Quick	Reference:	Command-Line	Tools	Key	Options
8.1	Split	a	Large	Trace	File	into	a	File	Set
Add	the	Wireshark	Program	Directory	to	Your	Path
Use	Capinfos	to	Get	the	File	Size	and	Packet	Count
Split	a	File	Based	on	Packets	per	Trace	File
Split	a	File	Based	on	Seconds	per	Trace	File
Open	and	Work	with	File	Sets	in	Wireshark
	Lab	42:	Split	a	File	and	Work	with	Filtered	File	Sets

8.2	Merge	Multiple	Trace	Files
Ensure	the	Wireshark	Program	Directory	is	in	Your	Path
Run	Mergecap	with	the	–w	Parameter
	Lab	43:	Merge	a	Set	of	Files	using	a	Wildcard

8.3	Capture	Traffic	at	Command	Line
Dumpcap	or	Tshark?
Capture	at	the	Command	Line	with	Dumpcap
Capture	at	the	Command	Line	with	Tshark
Save	Host	Information	and	Work	with	Existing	Trace	Files
	Lab	44:	Use	Tshark	to	Capture	to	File	Sets	with	an	Autostop	Condition

8.4	Use	Capture	Filters	during	Command-Line	Capture
8.5	Use	Display	Filters	during	Command-Line	Capture
	Lab	45:	Use	Tshark	to	Extract	HTTP	GET	Requests

8.6	Use	Tshark	to	Export	Specific	Field	Values	and	Statistics	from	a	Trace	File
Export	Field	Values
Export	Traffic	Statistics
Export	HTTP	Host	Field	Values
	Lab	46:	Use	Tshark	to	Extract	HTTP	Host	Names	and	IP	Addresses

8.7	Continue	Learning	about	Wireshark	and	Network	Analysis
Chapter	8	Challenge

Appendix	A:	Challenge	Answers
Chapter	0	Challenge	Answers
Chapter	1	Challenge	Answers
Chapter	2	Challenge	Answers
Chapter	3	Challenge	Answers
Chapter	4	Challenge	Answers
Chapter	5	Challenge	Answers
Chapter	6	Challenge	Answers
Chapter	7	Challenge	Answers
Chapter	8	Challenge	Answers

Appendix	B:		Trace	File	Descriptions
Network	Analyst's	Glossary
Online	Training	Offer

Chapter	0	Skills:	Explore	Key	Wireshark
Elements	and	Traffic	Flows

"There	has	been	one	constant	in	the	network	traffic	aspect	of	my	career,	which	started	in	1998:	packet
analysis	with	Ethereal,	later	renamed	to	Wireshark.	The	Air	Force	Computer	Emergency	Response
Team	(AFCERT),	where	I	learned	the	trade,	was	an	early	adopter	of	the	first	versions	of	the	tool.
Today,	I	couldn't	imagine	doing	protocol	inspection	without	Wireshark,	and	the	project	has	only

improved	over	time."

Richard	Bejtlich
Chief	Security	Officer,	Mandiant	Corporation

Quick	Reference:	Key	Wireshark	Graphical	Interface	Elements

1.	 Title	bar	—	trace	file	name,	capture	device	name,	or	Wireshark	version	number
2.	 Main	menu	—	standard	menu
3.	 Main	toolbar	—	learn	to	use	this	set	of	icon	buttons!
4.	 Display	filter	area	—	reduce	the	amount	of	traffic	you	see
5.	 Packet	List	pane	—	summary	of	each	frame
6.	 Packet	Details	pane	—	dissected	frames
7.	 Packet	Bytes	pane	—	hex	and	ASCII	details
8.	 Status	Bar	—	access	to	the	Expert,	annotations,	packet	counts,	and	profiles

0.1.	Understand	Wireshark's	Capabilities
Knowing	what	Wireshark	can	do	will	help	you	determine	if	it	is	the	right	tool	for	the	job.

Wireshark	is	the	world's	most	popular	network	analysis	tool	with	an	average	of	over	500,000	downloads
per	month.	Wireshark	is	also	ranked	#1	in	the	world	as	a	security	tool[1].	Named	one	of	the	"Most
Important	Open-Source	Apps	of	All	Time"[2],	Wireshark	runs	on	Windows,	Mac	OS	X,	and	*NIX.
Wireshark	can	even	be	run	as	a	Portable	App[3].

Wireshark	is	a	free	open	source	software	program	available	at	wireshark.org.	When	run	on	a	host	that	can
see	a	wired	or	wireless	network,	Wireshark	captures	and	decodes	the	network	frames,	offering	an	ideal
tool	for	network	troubleshooting,	optimization,	security	(network	forensics),	and	application	analysis.
Captured	traffic	can	be	saved	in	numerous	trace	file	formats	(defaulting	to	the	new	.pcapng	format).

Wireshark's	decoding	process	uses	dissectors	that	can	identify	and	display	the	various	fields	and	values
in	network	frames.	In	many	instances,	Wireshark's	dissectors	offer	an	interpretation	of	frame	contents	as
well—a	feature	that	significantly	reduces	the	time	required	to	locate	the	cause	of	poor	network
performance	or	to	validate	security	concerns.

The	open	source	development	community	has	created	thousands	of	dissectors	to	interpret	the	most
commonly	seen	applications	and	protocols	on	networks.	A	core	set	of	Wireshark	developers	is	led	by
Gerald	Combs,	the	original	creator	of	Ethereal	(Wireshark's	development	name	prior	to	May	2006).	As
an	open	source	project,	Wireshark's	source	code	is	open	to	anyone	for	review	or	enhancement.

Wireshark	can	be	used	to	easily	determine	who	the	top	talkers	are	on	the	network,	what	applications	are
currently	in	use,	which	protocols	are	supported	on	a	network,	whether	requests	are	receiving	error
responses,	and	whether	packets	are	being	dropped	or	delayed	along	a	path.	In	addition,	numerous	filters
can	be	applied	to	target	a	specific	address	(or	address	range),	application,	response	code,	conversation,
keyword,	etc.

The	Wireshark	installation	package	includes	numerous	tools	used	to	capture	packets	at	the	command	line,
merge	trace	files,	split	trace	files,	and	more.

Based	on	SLOCCount	(Source	Lines	of	Code	Count),	created	by	David	A.	Wheeler,	Wireshark	has	over
2.4	million	total	lines	of	code	(SLOC)[4]	and	the	total	estimated	cost	to	develop	Wireshark	is	over	$94
million.

The	following	is	a	quick	list	of	some	tasks	that	can	be	performed	using	Wireshark.

http://wireshark.org/

General	Analysis	Tasks
Find	the	top	talkers	on	the	network
See	network	communications	in	"clear	text"
See	which	hosts	use	which	applications
Baseline	normal	network	communications
Verify	proper	network	operations
Learn	who's	trying	to	connect	to	your	wireless	network
Capture	on	multiple	networks	simultaneously
Perform	unattended	traffic	capture
Capture	and	analyze	traffic	to/from	a	specific	host	or	subnet
View	and	reassemble	files	transferred	via	FTP	or	HTTP
Import	trace	files	from	other	capture	tools
Capture	traffic	using	minimal	resources

Troubleshooting	Tasks
Create	a	custom	analysis	environment	for	troubleshooting
Identify	path,	client,	and	server	delays
Identify	TCP	problems
Detect	HTTP	proxy	problems
Detect	application	error	responses
Graph	IO	rates	and	correlate	drops	to	network	problems
Identify	overloaded	buffers
Compare	slow	communications	to	a	baseline	of	normal	communications
Find	duplicate	IP	addresses
Identify	DHCP	server	or	relay	agent	problems	on	a	network
Identify	WLAN	signal	strength	problems
Detect	WLAN	retries
Capture	traffic	leading	up	to	(and	possibly	the	cause	of)	problems
Detect	various	network	misconfigurations
Identify	applications	that	are	overloading	a	network	segment
Identify	the	most	common	causes	of	poorly	performing	applications

Security	Analysis	(Network	Forensics)	Tasks
Create	a	custom	analysis	environment	for	network	forensics
Detect	applications	that	are	using	non-standard	ports
Identify	traffic	to/from	suspicious	hosts
See	which	hosts	are	trying	to	obtain	an	IP	address
Identify	"phone	home"	traffic
Identify	network	reconnaissance	processes
Locate	and	globally	map	remote	target	addresses
Detect	questionable	traffic	redirections
Examine	a	single	TCP	or	UDP	conversation	between	a	client	and	server
Detect	maliciously	malformed	frames
Locate	known	keyword	attack	signatures	in	your	network	traffic

Application	Analysis	Tasks
Learn	how	applications	and	protocols	work
Graph	bandwidth	usage	of	an	application
Determine	if	a	link	will	support	an	application
Examine	application	performance	after	update/upgrade
Detect	error	responses	from	a	newly	installed	application
Identify	which	users	are	running	a	particular	application
Examine	how	an	application	uses	transport	protocols	such	as	TCP	or	UDP

WARNING
Before	you	capture	your	first	packet,	ensure	you	have	permission	to	listen	to	the	network	traffic.	If	you
are	an	IT	staff	member,	obtain	written	permission	to	listen	in	to	network	traffic	for	troubleshooting,
optimization,	security,	and	application	analysis.	Consult	a	legal	specialist	to	understand	your	local
and	national	laws	regarding	packet	capture	on	wired	and	wireless	networks.

0.2.	Get	the	Right	Wireshark	Version
Since	you	may	move	from	one	location	to	another,	from	one	computer	to	another,	and	from	one	operating
system	to	another,	it's	best	to	know	on	what	systems	you	can	install	Wireshark.	Wireshark	runs	on	most	of
the	commonly	used	operating	systems,	including	Windows,	Mac	OS	X,	and	*NIX	systems.

All	OS	versions	of	Wireshark	can	be	obtained	from	www.wireshark.org.	Click	the	Download	Wireshark
button	and	the	site	will	recognize	the	operating	system	you	are	running	and	highlight	the	version	of
Wireshark	that	is	most	appropriate	for	your	OS.

If	you	are	really	new	to	Wireshark,	consider	downloading,	installing,	and	using	the	Windows	version—
the	Windows	installation	process	is	the	simplest	process	since	it	only	requires	running	a	single
executable	installation	file.

Currently,	the	Windows	and	Mac	OS	X	installation	processes	are	quite	simple	since	these	versions	of
Wireshark	are	available	with	an	installer	program	(binary	package).	In	the	case	of	Mac	OS	X	you	may	be
prompted	to	install	XQuartz	(graphical	interface	requirement).	The	installer	program	will	walk	you
through	the	process	to	locate	XQuartz,	if	necessary.

In	the	case	of	*NIX,	however,	you	must	obtain	the	source	and	build	Wireshark	for	the	operating	system
you	are	using.	This	process	is	a	bit	more	complex	than	just	downloading	the	binary	package	and	clicking
"install."	You	will	need	to	obtain	GTK+	(graphical	interface	requirement)	and	libpcap	(packet	capture
requirement)	before	you	begin	to	build	Wireshark	on	your	system.	Since	this	book	is	focused	on	the
functionality	of	Wireshark,	and	not	the	installation	process,	we	refer	you	to
www.wireshark.org/docs/wsug_html_chunked/ChapterBuildInstall.html[5]	for	step-by-step
installation	instructions.

Wireshark	also	comes	preinstalled	on	a	number	of	forensic	tool	distributions,	such	as	BackTrack
(www.backtrack-linux.org),	although	it	may	not	be	the	latest	version.

The	complete	list	of	operating	system	requirements	is	available	at
www.wireshark.org/docs/wsug_html_chunked/ChIntroPlatforms.html.

Sign	up	for	the	Wireshark-announce	mailing	list	at	www.wireshark.org/lists/	to	be	notified	when	new
Wireshark	releases	are	available.	You	typically	want	to	be	up-to-date	with	Wireshark	as	new	releases
often	include	bug	and	security	fixes.

http://www.wireshark.org/
http://www.wireshark.org/docs/wsug_html_chunked/ChapterBuildInstall.html
http://www.backtrack-linux.org/
http://www.wireshark.org/docs/wsug_html_chunked/ChIntroPlatforms.html
http://www.wireshark.org/lists/

0.3.	Learn	how	Wireshark	Captures	Traffic
Understanding	how	Wireshark	captures	traffic	will	affect	how	you	use	Wireshark's	features.	In	this	section
we	refer	to	the	elements	depicted	in	Figure	1.

Figure	1.	How	Wireshark	handles	traffic	from	a	live	capture	or	from	a	saved	trace	file.

The	Capture	Process	Relies	on	Special	Link-Layer	Drivers
When	your	computer	connects	to	a	network,	it	relies	on	a	network	interface	card	(such	as	an	Ethernet
card)	and	link-layer	driver	(such	as	an	Atheros	PCI-E	Ethernet	driver)	to	send	and	receive	packets.

Wireshark	also	relies	on	network	interface	cards	and	link-layer	drivers	to	pass	up	traffic	for	capture	and
analysis.	Although	the	network	interface	cards	are	the	same	in	both	situations,	when	you	use	Wireshark,
two	special	link-layer	drivers	are	commonly	used:	WinPcap	and	libpcap.	These	special	drivers	provide
access	to	raw	data	on	the	network.

WinPcap	is	the	special	link-layer	driver	used	on	a	Windows	host.	Libpcap	is	the	special	link-layer	driver
used	on	*NIX	hosts	and	OS	X.

When	you	start	capturing	traffic	with	Wireshark,	a	tool	called	dumpcap	is	launched	to	do	the	actual
capturing.	Frames	are	passed	up	from	the	network,	through	one	of	these	special	link-layer	drivers	directly
into	Wireshark's	Capture	Engine.	If	you	applied	a	capture	filter	(only	capturing	broadcast	traffic	for
example),	the	frames	that	pass	through	the	capture	filter	are	passed	up	to	the	Capture	Engine.	Capture
filters	use	Berkeley	Packet	Filtering	(BPF)	syntax.

For	more	information	on	filtering	out	(excluding)	or	filtering	in	(passing	on	to	Wireshark)	specific	traffic
types,	refer	to	Reduce	the	Amount	of	Traffic	You	have	to	Work	With.

The	Dumpcap	Capture	Engine	Defines	Stop	Conditions
The	Dumpcap	capture	engine	defines	how	the	capture	process	runs	and	the	stop	conditions.	For	example,
you	can	set	up	a	capture	to	save	frames	to	a	set	of	50	MB	files	and	automatically	stop	after	6	files	have
been	written.	We	refer	to	these	files	as	trace	files.

The	current	default	trace	file	format	is	.pcapng	(packet	capture,	next	generation).

The	new	.pcapng	format	offers	the	ability	to	save	metadata	with	a	file.	In	essence,	you	can	now	save
annotations	(comments)	inside	your	trace	file.	We	will	look	into	this	process	in	Chapter	7.

The	Core	Engine	is	the	Goldmine
The	Capture	Engine	passes	frames	up	to	the	Core	Engine.	This	is	where	Wireshark's	power	becomes
evident.	Wireshark	supports	thousands	of	dissectors	that	translate	the	incoming	bytes	into	human-readable
format	frames.	The	dissectors	break	apart	the	fields	in	the	frames	and	often	perform	analysis	on	the
content	of	those	fields.

For	more	information	on	how	Wireshark	dissectors	work,	see	Dissect	the	Wireshark	Dissectors.

The	Graphical	Toolkit	Provides	the	User	Interface
The	GIMP	(GNU	Image	Manipulation	Program)	graphical	toolkit	provides	the	cross-platform	interface
for	Wireshark.	With	very	few	exceptions,	you	can	move	seamlessly	from	a	Wireshark	system	running	on
one	platform	to	a	Wireshark	system	running	on	another	platform	with	no	problems.	The	basic	interface
elements	are	the	same.

The	Wiretap	Library	is	Used	to	Open	Saved	Trace	Files
The	Wiretap	Library	is	used	for	the	input/output	functions	for	saved	trace	files.	When	you	open	a	trace	file
(whether	captured	with	Wireshark	or	another	analysis	tool),	the	Wiretap	Library	delivers	the	frames	to	the
Core	Engine.

For	more	information	on	the	Wiretap	Library,	see	Open	Trace	Files	Captured	with	Other	Tools.

0.4.	Understand	a	Typical	Wireshark	Analysis
Session
Although	each	analysis	session	is	a	bit	different,	there	are	some	basic	steps	that	you	should	perform
during	each	analysis	session.

The	following	is	a	checklist	of	the	most	common	tasks	performed	during	an	analysis	session.	Consider
using	this	basic	task	checklist	when	you	open	a	trace	file.

Determine	who	is	talking	in	the	trace	file
See	Find	Out	Who's	Talking	to	Whom	on	the	Network
Determine	what	applications	are	in	use
See	List	Applications	Seen	on	the	Network
Filter	on	the	conversation	of	interest
See	Filter	on	a	Single	TCP	or	UDP	Conversation
Graph	the	IO	to	look	for	drops	in	throughput
See	Graph	Application	and	Host	Bandwidth
Open	the	Expert	to	look	for	problems
See	Identify	TCP	Errors
Determine	the	round	trip	time	to	identify	path	latency
See	Use	Filters	to	Spot	Communication	Delays

Each	of	these	tasks	is	covered	in	this	book.

Now	is	the	time	to	start	your	own	checklist	of	tasks.	As	you	go	through	the	labs	in	this	book,	note	the
tasks	that	you'd	like	to	repeat	each	time	a	trace	file	comes	in.	As	with	many	skills,	practice	will	pay	off.

0.5.	Differentiate	a	Packet	from	a	Frame
You	will	see	both	terms	used	in	the	world	of	protocol	analysis.	The	term	"packet"	is	often	used	as	a
blanket	term	to	describe	anything	sent	across	a	network,	but	there	is	a	definite	difference	between	these
two	terms.

Recognize	a	Frame
The	term	"frame"	is	used	when	referring	to	the	communication	from	the	Media	Access	Control	(MAC)
layer	header	(such	as	an	Ethernet	header)	through	the	MAC	trailer.	All	communications	between	devices
use	frames.	We	don't	spend	a	lot	of	time	troubleshooting	or	analyzing	Ethernet	frames,	however.	There's
not	a	lot	to	analyze	in	an	Ethernet	header	or	trailer	and	Ethernet	technology	is	fairly	well	implemented	and
not	often	the	problem.	In	the	world	of	wireless	technology,	however,	there	is	a	lot	going	on	in	the	WLAN
header—enough	to	focus	on	during	a	troubleshooting	session.

You	will	not	always	see	the	Ethernet	trailer	when	analyzing	traffic.	Some	operating	systems	do	not
support	capturing	the	trailers	on	Ethernet	networks.

Just	to	make	this	more	confusing,	Wireshark	adds	a	"Frame"	section	to	provide	extra	information	about	all
actual	frames.	When	you	look	inside	the	Packet	Details	pane,	you	will	see	this	Frame	section	at	the	top.	If
you	expand	that	section,	you	will	see	time,	coloring	and	other	information	added	to	the	actual	frame	by
Wireshark.

The	actual	frame	begins	with	the	second	line,	labeled	"Ethernet	II."	Wireshark's	Frame	section	only
contains	information	about	the	frame	(metadata).	It	does	not	contain	any	of	the	actual	contents	of	the	frame.

Figure	2	indicates	the	beginning	and	ending	of	the	actual	frame	as	well	as	the	Frame	section	that	contains
the	metadata.

Recognize	a	Packet
A	packet	is	the	stuff	that	sits	inside	a	MAC	frame.	In	TCP/IP	communications,	a	packet	begins	at	the	IP
header	and	ends	just	before	the	MAC	trailer.	People	often	refer	to	network	analysis	as	"packet
analysis"—this	naming	is	due	to	the	fact	that	the	majority	of	analysis	tasks	begin	at	the	IP	header.	Figure	2
indicates	the	beginning	and	ending	of	the	packet.

Recognize	a	Segment
A	segment	is	the	stuff	that	follows	a	TCP	header.	That	may	include	an	HTTP	header	or	just	data.	During
establishment	of	a	TCP	connection,	each	TCP	peer	shares	its	Maximum	Segment	Size	(MSS)	value.
Figure	2	indicates	the	beginning	and	ending	of	the	TCP	segment.

Figure	2.	How	will	these	devices	affect	the	format	of	the	frame	along	the	path?

In	this	book,	we	use	the	term	"frame"	when	focusing	on	the	MAC	header	in	communications,	or	when
referring	to	a	value	in	the	No.	(number)	column	(frame	number)	in	the	Packet	List	pane.

Since	Wireshark	often	refers	to	frames	as	packets	in	various	menus,	we	will	use	Wireshark's	terminology
in	those	cases.	For	example,	the	File	menu	contains	an	option	to	"Export	Specified	Packets"	even	though	it
is	exporting	frames.

0.6.	Follow	an	HTTP	Packet	through	a	Network
To	be	a	good	analyst,	you	must	know	TCP/IP	very	well.	Also	key	to	communications	analysis	is	a	solid
understanding	of	how	packets	travel	through	a	network	and	how	the	traffic	is	affected	by	various	network
devices.

Let's	look	at	a	network	path	that	includes	a	client,	two	switches,	one	standard	router,	a	router	that
performs	Network	Address	Translation	(NAT)	and	a	server.

Figure	3.	How	will	these	devices	affect	the	format	of	the	frame	along	the	path?

In	Figure	3,	our	client	sends	an	HTTP	GET	request	for	the	main	page	on	the	HTTP	server.	We've	used
simple	letters	to	represent	the	MAC	addresses	(aka	hardware	addresses)	of	the	devices.

To	know	how	devices	affect	the	contents	of	the	frame,	we	will	look	at	how	this	frame	is	altered	as	it
travels	through	switches,	routers,	and	even	a	router/NAT	device.

There	are	many	times	when	you	will	need	to	capture	at	more	than	one	location.	For	example,	when	you
want	to	know	how	a	device	affects	the	contents	of	a	frame,	you	need	to	capture	the	frame	both	before
and	after	it	travels	through	the	device.	You	may	also	want	to	capture	traffic	at	two	locations	to
determine	which	internetworking	device	is	dropping	packets.
Because	capturing	at	multiple	locations	is	a	common	analysis	task,	you	should	have	Wireshark	(or	at
least	dumpcap)	loaded	on	more	than	one	laptop	or	be	prepared	to	capture	using	port	spanning	or	a
full-duplex	tap.	We	will	cover	these	capture	options	in	Chapter	2.

Point	1:	What	Would	You	See	at	the	Client?

All	devices	can	only	send	to	the	hardware	address	of	local	machines	in	MAC	headers.	This	MAC	header
will	be	stripped	off	by	the	first	router	along	the	path—these	MAC	headers	are	only	temporary	and	are
used	to	get	the	packet	to	the	next	hop	along	a	path.	In	the	IP	header	example	above,	the	packet	is	addressed
from	10.1.0.1	(client)	to	74.125.224.143	(server).

Analyst	View:	At	this	point,	the	Ethernet	header	of	our	client's	GET	request	is	addressed	to	the	local
router's	MAC	address	(B).

Point	2:	What	Would	You	See	on	the	Other	Side	of	the	First	Switch?

True	switches[6]	do	not	affect	the	contents	of	the	frame.	Switch	1	would	simply	look	at	the	destination
MAC	address	(MAC	address	B)	to	determine	if	that	host	is	connected	to	one	of	the	switch	ports.

When	the	switch	finds	the	switch	port	associated	with	MAC	address	B,	the	switch	forwards	the	frame	out
the	appropriate	switch	port.

Analyst	View:	We	would	see	a	frame	that	matches	the	frame	we	saw	at	point	1.

Point	3:	What	Would	You	See	on	the	Other	Side	of	the	Router?

Upon	receipt	of	the	frame,	after	checking	to	make	sure	the	frame	isn't	corrupt	and	that	the	frame	is
addressed	to	the	router's	MAC	address,	the	router	strips	off	the	Ethernet	header.

The	router	examines	the	destination	IP	address	in	the	packet	(it	is	now	considered	a	packet,	not	a	frame)
and	consults	its	routing	tables	to	see	if	it	knows	what	to	do	with	the	packet.	If	the	router	does	not	know
how	to	get	to	the	destination	IP	address	(and	it	doesn't	have	a	default	gateway	to	send	the	packet	to),	the
router	will	drop	the	packet	and	send	a	message	back	to	the	originator	indicating	there	is	a	routing
problem.	We	can	capture	these	error	messages	with	Wireshark	and	detect	which	router	is	unable	to
forward	our	packets	to	the	destination.

If	the	router	has	the	information	required	to	forward	the	packet,	it	decrements	the	IP	header	Time	to	Live
(hop	count)	field	value	by	1	and	applies	a	new	Ethernet	header	to	the	packet	before	sending	it	on	to	the
router/NAT	device.

Analyst	View:	We	would	see	a	new	Ethernet	header	(from	C	to	D)	and	an	IP	header	Time	to	Live	value
that	has	been	decreased	by	1.

Point	4:	What	Would	You	See	on	the	Other	Side	of	the	Router/NAT
Device?

The	router/NAT	device	goes	through	the	same	routing	process	as	the	previous	router	before	forwarding
the	packet.	Additionally,	the	router/NAT	device	changes	the	source	IP	address	(network	address
translation)	and	source	port	number	while	making	note	of	the	original	source	IP	address	and	source	port
number.	The	router/NAT	device	associates	this	information	with	the	newly	assigned	outbound	IP	address
and	port	number.

Analyst	View:	We	would	see	a	new	Ethernet	header	(from	E	to	F)	and	an	IP	header	Time	to	Live	value
that	has	been	decreased	by	1.	In	addition,	we	would	see	that	the	source	IP	address	and	source	port	number
has	changed.

Point	5:	What	Would	You	See	at	the	Server?

At	this	point	we	should	see	the	same	frame	that	we	saw	at	Point	4.	Remember,	switches	should	not	alter
the	contents	of	a	frame.

Where	You	Capture	Traffic	Matters
If	you	capture	at	Point	1,	2,	or	3,	you	cannot	determine	the	MAC	address	of	the	server.	Likewise,	if	you
capture	at	Point	3,	4,	or	5,	you	cannot	determine	the	MAC	address	of	the	client.	If	you	capture	at	point	5,
you	cannot	tell	the	actual	IP	address	of	the	client,	either.

Beware	of	Default	Switch	Forwarding
Remember,	switches	forward	frames	based	on	MAC	address.	If	you'd	connected	a	Wireshark	system	to
either	of	the	switches	in	Figure	3,	you	would	not	have	seen	any	of	the	traffic	between	our	HTTP	client	and
HTTP	server.	The	switches	would	only	forward	broadcast,	multicasts,	and	traffic	destined	to	your
Wireshark	system's	MAC	address	down	your	port[7].

Switches	do	not	alter	the	MAC	addresses	or	the	IP	addresses	of	the	traffic,	but	they	can	be	a	major
roadblock	in	network	analysis.

Consider	the	example	shown	in	Figure	4.	We	loaded	Wireshark	on	the	machine	connected	to	switch	port
1.	We	have	a	problem	if	we	want	to	listen	to	the	traffic	between	the	two	other	devices	on	the	network.	The
switch	is	not	going	to	forward	this	down	our	port—it's	not	addressed	to	our	MAC	address.

Figure	4.	Switches	can	affect	the	amount	of	traffic	you	see.

It	is	this	limitation	that	causes	us	to	figure	out	other	methods	for	listening	in	on	network	traffic.	We	will
look	at	our	options	in	Identify	the	Best	Capture	Location	to	Troubleshoot	Slow	Browsing	or	File
Downloads.

Plan	and	test	your	capture	methods	in	advance.	It's	not	a	fun	process	to	start	testing	capture	methods
when	all	hell	breaks	loose	on	the	network	and	users,	their	managers,	your	manager,	and	the	CEO	are
pounding	on	your	office	door	or	encroaching	in	your	cubicle	air	space.	Be	prepared–be	practiced.

0.7.	Access	Wireshark	Resources
Eventually	you	will	hit	a	problem	that	you	just	can't	solve.	Whether	it	is	a	problem	in	Wireshark
functionality	or	packet	structures,	you	can	find	assistance	in	several	key	places	on	the	Internet.

Use	the	Wireshark	Wiki	Protocol	Pages
Wireshark	offers	support	through	a	series	of	Wiki	protocol	pages.

Visit	wiki.wireshark.org	to	see	all	the	Wiki	information	related	to	Wireshark.	You	can	also	add	the
protocol	or	application	name	to	the	URL	for	assistance	on	a	protocol.	For	example,	you	can	type
wiki.wireshark.org/Ethernet[8].

You	can	also	get	to	these	pages	by	right-clicking	on	any	protocol	displayed	inside	a	frame,	as	shown	in
Figure	5.	Wireshark	detects	the	protocol	selected	and	launches	the	related	Wiki	page.

Figure	5.	Right-click	on	any	protocol	shown	in	the	Packet	Details	pane	to	launch	the	related	Wiki	protocol	page.	[http-
google101.pcapng]

http://wiki.wireshark.org/
http://wiki.wireshark.org/Ethernet

Get	Your	Questions	Answered	at	ask.wireshark.org
Gerald	Combs,	creator	of	Wireshark,	opened	a	Q&A	forum	for	Wireshark	users	(shown	in	Figure	6).	Visit
ask.wireshark.org	to	pose	your	questions	to	the	Wireshark	community.	You	must	register	for	a	free
account	to	post	a	question	here.

Figure	6.	Use	the	Search	function	(7)	to	look	for	key	words	related	to	your	question	at	ask.wireshark.org.

The	following	lists	the	key	areas	on	ask.wireshark.org.		

1.	 Questions	tab—Click	to	return	to	the	All	Questions	page	(shown	above).
2.	 Tags	tab—Click	to	see	the	list	of	tags	related	to	questions—click	on	tags	related	to	your	topic	of

interest	to	see	if	there	is	helpful	information	there.
3.	 Users	tab—Click	to	see	the	users	who	participate	in	the	Q&A	forum—this	area	also	includes	their

status	in	badge	colors,	counts,	and	administrative	status	(diamonds).
4.	 Badges	tab—Click	to	see	how	many	contributors	have	achieved	recognition	for	their	participation

in	the	Q&A	forum.
5.	 Unanswered	tab—Click	to	see	questions	that	are	still	considered	unanswered.	Unfortunately,	many

Q&A	participants	do	not	mark	questions	"answered"	even	though	they	have	been.
6.	 Ask	a	Question	tab—Click	to	ask	your	question.	If	you	don't	have	a	free	account	here	yet,	your

question	will	be	saved	as	you	create	an	account	and	login	with	your	new	credentials.
7.	 Search	area	and	button—Search	for	the	topic	you	are	interested	in	first.	This	is	a	great	place	to

start.
8.	 Vote	count—Forum	users	can	vote	on	(like/unlike)	questions.
9.	 Answer	count—This	number	indicates	how	many	answers	have	been	submitted	to	a	question.
10.	 View	count—This	number	indicates	how	many	times	a	question	has	been	viewed.	This	is	a	great

indicator	to	determine	how	"hot"	a	topic	is.
11.	 Question	title	(hyperlink)	and	tags—Click	on	the	question	title	to	jump	to	the	question	page.	The

tags	indicate	the	topic(s)	covered	in	the	question.
12.	 Jump	to	buttons—Click	on	any	of	these	buttons	to	jump	to	the	list	of	active	questions,	newest

questions,	or	questions	that	have	the	most	votes.
13.	 Question	activity	age	and	contributor	information—This	area	indicates	how	old	a	question	is

http://ask.wireshark.org/
http://ask.wireshark.org/

(based	on	last	activity	such	as	answer,	comment,	or	even	just	posting	the	question),	who	contributed
to	the	question	most	recently,	and	information	about	that	last	contributor.	The	contributor	information
includes	the	Karma	level	(level	of	acquired	trust	in	the	forum)	and	their	administrative	levels.

For	more	information	on	the	Q&A	forum,	visit	ask.wireshark.org/faq/.

Note:	During	the	outlining	stages	of	this	book,	we	pulled	up	the	most	active	questions	and	the	hottest
topics	on	the	Q&A	Forum.	That	list,	along	with	years	of	experience	teaching	Wireshark	techniques	and
analyzing	network	traffic,	led	to	the	skills	included	in	this	book.

http://ask.wireshark.org/faq/

0.8.	Analyze	Traffic	Using	the	Main	Wireshark
View
You	don't	always	need	to	do	a	deep	dive	into	the	traffic	to	understand	what's	going	on.	A	quick	look	at	the
main	Wireshark	window	may	be	all	you	need	to	find	the	cause	or	culprit.

Open	a	Trace	File	(Using	the	Main	Toolbar,	Please)
When	launched,	Wireshark	displays	a	Start	Page.	Although	there	are	many	functions	available	on	the	Start
Page,	the	fastest	way	to	navigate	in	Wireshark	is	though	the	main	menu	and	main	toolbar.	Click	the	File
Open	button	on	the	main	toolbar	(circled	in	Figure	7).	Open	http-google101.pcapng	(available	at
www.wiresharkbook.com.

Figure	7.	The	Start	Page	appears	when	you	launch	Wireshark.	Instead,	use	the	main	toolbar	to	navigate	in	Wireshark.

This	trace	file	contains	the	traffic	between	a	client	and	the	www.google.com	server	when	someone	opens
the	main	web	site	page.	If	you	capture	your	own	traffic	to	www.google.com,	it	may	look	quite	different.
Your	traffic	will	contain	different	MAC	and	IP	addresses	and	you	may	have	some	elements	of	the	Google
site	cached	(on	disk).	In	the	case	of	cached	content,	you	will	load	portions	of	the	web	site	page	from	disk
—you	will	not	see	the	cached	content	being	sent	from	the	server	in	the	trace	file.

We	will	work	with	this	trace	file	as	we	explore	the	various	elements	of	the	Wireshark	main	view.

http://www.wiresharkbook.com/

Know	When	You	Must	Use	the	Main	Menu
We	all	know	how	to	use	menus.	The	key	is	when	to	use	the	main	menu	(Figure	8)	and	where	to	find	what
you're	looking	for.	Many	of	Wireshark's	functions	are	available	through	the	right-click	method	or	the	main
toolbar	(also	referred	to	as	the	icon	toolbar).

Figure	8.	All	functions	in	the	Go	and	Capture	menu	items	can	be	done	faster	using	the	main	toolbar.

The	following	list	highlights	the	reasons	you	may	need	to	use	the	main	menu	instead	of	the	main	toolbar.

File—open	file	sets,	save	subsets	of	packets,	export	HTTP	objects
Edit—clear	all	marked	packets,	ignored	packets,	and	time	references
View—view/hide	toolbars	and	panes,	edit	the	Time	column	setting,	reset	coloring
Analyze—create	display	filter	macros,	see	enabled	protocols,	save	forced	decodes
Statistics—build	graphs	and	open	statistics	windows	for	various	protocols
Telephony—perform	all	telephony-related	functions	(graphs,	charts,	playback)
Tools—build	firewall	rules	from	packet	contents,	access	the	Lua	scripting	tool
Internals—view	the	dissector	tables	and	a	list	of	supported	protocols
Help—learn	where	Wireshark	stores	global	and	personal	configuration	files

Again,	this	list	focuses	on	things	you	need	in	the	main	menu.	Become	an	efficient	analyst	by	finding	the
fastest	ways	to	perform	tasks.

Learn	to	Use	the	Main	Toolbar	Whenever	Possible
You	can	work	very	efficiently	by	clicking	on	the	buttons	on	the	main	toolbar	to	open	files	and	access
filters,	coloring	rules,	and	preferences.	In	this	book	we	use	most	of	the	key	functions	on	the	main	toolbar.
These	functions	are	listed	in	Figure	9.

Figure	9.	Become	familiar	with	the	main	toolbar	functions—this	is	the	fastest	way	to	work	in	Wireshark.

Master	the	Filter	Toolbar
We	use	display	filters	to	pull	the	"needle	out	of	the	haystack."	When	you	have	thousands	or	hundreds	of
thousands	of	packets	to	look	through,	use	display	filters	to	see	traffic	that	is	related	to	the	task	at	hand.	For
example,	if	you	are	troubleshooting	someone's	web	browsing	session,	you	can	use	a	display	filter	to
remove	email	sessions	or	virus	update	traffic	from	view.

Figure	10	highlights	the	purpose	of	each	section	of	the	filter	toolbar.

Figure	10.	Learn	to	use	the	display	filter	toolbar	to	save	time	analyzing	traffic.

Summarize	the	Traffic	Using	the	Packet	List	Pane
Wireshark	has	three	panes	(windows)—the	Packet	List	pane,	the	Packet	Details	pane,	and	the	Packet
Bytes	pane.

The	Packet	List	pane	is	the	top	pane,	as	shown	in	Figure	11.

Figure	11.	When	you	select	a	frame	in	the	Packet	List	pane,	the	Packet	Details	pane	and	Packet	Bytes	pane	provide	additional
information	on	the	selected	packet.	[http–google101.pcapng]

Scroll	through	the	Packet	List	pane	to	see	which	hosts	are	communicating,	the	protocols	or	applications	in
use,	and	general	information	about	the	frames.	Wireshark	colors	the	frames	based	on	a	set	of	coloring
rules.	For	more	information	on	coloring	rules,	see	Identify	Applied	Coloring	Rules.

You	can	add	columns	to	the	Packet	List	pane	and	sort	on	any	column.	This	sorting	ability	can	help	you	find
similar	packets	or	large	delays	in	the	trace	file.	By	default,	the	Packet	List	pane	is	sorted	by	the	frame
number	column	("No."	column	on	the	far	left	side).

Figure	12	shows	the	Packet	List	pane	of	http-google101.pcapng.	Each	packet	in	the	trace	file	contains
information	in	the	default	columns	listed	below.

Number	("No.")	column—Each	frame	is	assigned	a	number.	By	default,	traffic	is	sorted	on	the	No.
column	from	low	to	high.	You	can	sort	the	Packet	List	pane	by	clicking	on	the	desired	column
heading.	If	you	change	the	sort	order	and	want	to	return	to	the	default	look	of	the	Packet	List	pane,
sort	on	this	column.
Time	column—By	default,	Wireshark	shows	when	each	frame	arrived	compared	to	the	first	frame	in
the	Time	column.	We	will	use	this	column	to	find	delays	in	Detect	Latency	Problems	by	Changing
the	Time	Column	Setting.
Source	and	Destination	columns—The	Source	and	Destination	columns	show	the	highest	layer
address	available	in	each	frame.	Some	frames	only	have	a	MAC	address	(ARP	packets,	for
example)	so	those	MAC	addresses	will	be	displayed	in	the	Source	and	Destination	columns.	In
Figure	12,	we	see	that	all	of	our	frames	have	IP	addresses	shown	in	the	Source	and	Destination

columns.
Protocol	column—Wireshark	displays	the	last	dissector	applied	to	the	frame.	This	is	a	great	place
to	look	if	you're	trying	to	figure	out	what	applications	are	in	use.	In	Figure	12,	we	see	DNS,	TCP,
and	HTTP	listed	in	this	column.
Length	column—This	column	indicates	the	total	length	of	each	frame.	We	can	easily	detect	if	an
application	uses	itty	bitty	stinkin'	packet	sizes	by	looking	at	this	column.
Info	column—This	column	provides	basic	information	about	the	frame.	Look	at	this	column	as	you
scroll	through	this	trace	file.	You	will	see	many	DNS	queries	and	responses,	many	HTTP	GET
requests,	and	data	packets	as	the	user	loads	the	main	Google	page.

Figure	12.	The	seven	default	columns	of	the	Packet	List	pane.	[http-google101.pcapng]

Sort	Columns	in	the	Packet	List	Pane
As	mentioned	earlier,	you	can	sort	the	Packet	List	pane	by	clicking	on	the	desired	column	heading.	For
example,	if	you	click	on	the	Protocol	column	heading	when	viewing	http–google101.pcapng,	Wireshark
reorders	the	frames	as	DNS,	HTTP,	and	TCP	(ascending	alphabetically),	as	shown	in	Figure	13.

Click	the	Number	("No.")	column	heading	once	to	reorder	the	Packet	List	pane	in	its	original	order	(from
low	to	high).

Figure	13.	Click	once	on	any	column	heading	to	sort	from	low	to	high—click	again	to	sort	from	high	to	low.	[http–
google101.pcapng]

Reorder	the	Columns
You	can	change	the	location	of	columns	by	clicking	and	dragging	on	a	column	heading	to	move	it	left	or
right.	In	Figure	14	we	moved	the	Time	column	to	the	right.

Figure	14.	Just	click	and	drag	column	headings	left	or	right	to	reorder	columns.	[http–google101.pcapng]

Right-Click	on	Column	Headings	to	Hide,	Display,	Rename,	and	Remove	Columns
Right-click	on	any	column	heading	to	view	your	options	in	a	drop-down	menu.	Select	Hide	Column	to
remove	the	column	from	view,	as	shown	in	Figure	15.	To	view	the	column	again,	right-click	on	any
column	heading,	select	Displayed	Columns,	and	select	the	column	name[9].

Figure	15.	Right-click	on	any	column	heading	to	view	the	column	options	menu.	When	you	do	not	want	to	see	a	column,	select	Hide
Column.	[http-google101.pcapng]

Right-Click	in	the	Packet	List	Pane	to	View	Available	Options
Many	of	Wireshark's	windows	and	views	support	right-click	functions.	Right-click	on	any	packet	in	the
Packet	List	pane	to	see	what's	available,	as	shown	in	Figure	16.

In	this	book,	we	use	this	right-click	functionality	to	apply	filters,	colorize	traffic,	reassemble	traffic
(follow	streams),	force	Wireshark	to	dissect	something	in	a	different	way,	and	more.

Figure	16.	Right-click	on	any	packet	in	the	Packet	List	pane	to	see	the	available	functions.	[http–google101.pcapng]

Use	Packet	Coloring	to	Your	Advantage
Wireshark	contains	20	default	coloring	rules	to	help	you	identify	the	traffic	types	and	spot	network
problems	faster.	You	can	easily	change	these	coloring	rules	and	create	additional	coloring	rules	to	alert
you	to	unusual	traffic.	We	will	work	with	coloring	rules	in	Identify	Applied	Coloring	Rules.

Dig	Deeper	in	the	Packet	Details	Pane
When	you	click	on	a	packet	in	the	Packet	List	pane,	Wireshark	shows	the	details	for	that	packet	in	the
Packet	Details	pane	(the	middle	pane).	The	Packet	Details	pane	shows	the	power	of	Wireshark's
dissectors.

As	mentioned	earlier,	the	Frame	section	is	not	part	of	a	packet	as	it	travels	through	a	network—Wireshark
adds	the	Frame	section	for	additional	information	about	the	frame,	such	as	when	the	frame	arrived,	what
coloring	rule	is	applied	to	the	frame,	the	frame	number,	and	frame	length,	as	seen	in	Figure	17.

As	you	move	through	the	Packet	Details	pane,	click	on	the	+	indicators	to	expand	sections	of	the	frames.
Alternately	you	can	use	right-click	to	expand	en	entire	frame	(Expand	All)	or	expand	just	one	collapsed
section	(Expand	Subtrees).

Figure	17.	The	Frame	section	includes	metadata	such	as	arrival	timestamp,	frame	number,	and	dissectors	applied	to	the	frame.	[http–
google101.pcapng]

Get	Geeky	in	the	Packet	Bytes	Pane
This	is	the	"geek	pane."	The	Packet	Bytes	pane	shows	the	contents	of	the	frame	in	hex	and	ASCII	formats,
as	shown	in	Figure	18.	If	the	frame	doesn't	have	any	readable	strings,	the	ASCII	portion	will	look	like	a
bunch	of	junk.	We	may	look	at	this	pane	when	Wireshark	sees	"data"	in	a	frame.

When	you	highlight	a	field	in	the	Packet	Details	pane,	Wireshark	also	highlights	the	location	of	that	field
and	the	bytes	contained	in	that	field	in	the	Packet	Bytes	pane.

If	you	don't	want	to	see	the	Packet	Bytes	pane,	select	View	|	Packet	Bytes	to	toggle	it	off.	Perform	the
same	steps	to	turn	it	on	again.

Figure	18.	The	packet	bytes	pane	shows	ASCII	strings	contained	in	the	packet.	[http–google101.pcapng]

Pay	Attention	to	the	Status	Bar
The	Status	Bar	consists	of	two	buttons	and	three	columns.	These	columns	can	be	resized	as	necessary.

Figure	19.	The	Status	Bar	content	changes	depending	on	what	you	click	on	in	the	Packet	List	pane	or	Packet	Details	pane.	[http-
google101.pcapng]

Find	Problems	with	the	Expert	Infos	Button	
The	first	button	is	the	Expert	Infos	button.	This	button	is	colored	to	show	you	the	highest	level	of
information	contained	in	the	Expert	Infos	window.	The	Expert	Infos	window	can	alert	you	to	numerous
network	concerns	seen	in	the	trace	file	as	well	as	packet	comments.	We	will	work	with	the	Expert	Infos
window	in	Use	the	Expert	Infos	Button	on	the	Status	Bar.

Add	Notes	to	a	Trace	File	with	the	Annotation	Button	
The	second	button	is	the	trace	file	Annotation	button.	Click	this	button	to	add,	edit,	or	view	a	trace	file
comment.	This	feature	can	only	be	used	if	the	trace	file	has	been	saved	in	.pcapng	format.

First	Column:	Get	Field,	Capture,	or	Trace	File	Information
The	information	shown	in	the	first	column	(to	the	right	of	the	Annotation	button)	changes	depending	on
what	is	highlighted	in	the	panes	above	it	or	if	you	are	running	a	live	trace	file.	In	Figure	19,	we	can	see
the	file	name	and	size	in	this	column.	If	you	click	on	a	field	in	the	Packet	Bytes	pane,	this	column	displays
the	field	name[10].	Click	around	inside	the	Packet	Details	pane	to	see	the	contents	of	this	first	column
change.

Second	Column:	Get	Packet	Counts	(Total	and	Displayed)
When	you	open	a	saved	trace	file,	the	second	column	indicates	the	total	number	of	packets	in	the	file,	the
number	of	packets	currently	displayed	(in	case	we	applied	a	display	filter),	the	number	of	marked	packets
(packets	we	marked	as	"of	interest"),	and	the	amount	of	time	required	to	load	the	trace	file.	During	a	live
capture,	this	column	displays	the	number	of	packets	captured,	displayed,	and	marked.

In	Figure	19,	we	can	see	that	http-google101.pcapng	contains	374	packets	and	we	haven't	filtered	any	of
them	from	view.

Third	Column:	Determine	the	Current	Profile
The	third	column	indicates	your	current	profile.	Figure	19	indicates	that	we	are	working	in	the	Default
profile.	Profiles	are	created	so	you	can	customize	your	Wireshark	environment.

For	more	information	on	profiles,	refer	to	Customize	Wireshark	for	Different	Tasks	(Profiles).

There	are	two	things	you	can	do	to	improve	efficiency	using	Wireshark.
First,	try	right-clicking	on	various	packets,	fields,	and	windows	in	Wireshark	to	determine	if	right-
click	functionality	is	available.	Many	tasks	are	only	available	when	you	right-click.	Other	can	just	be

performed	faster	using	the	right-click	method.
Second,	get	to	know	Wireshark's	main	toolbar	and	use	that	whenever	possible.
Although	Wireshark	launches	with	the	Start	Page,	once	you	leave	the	Start	Page,	you	don't	return	to	it
unless	you	close	a	trace	file	or	restart	Wireshark.	Use	the	main	toolbar	and	the	right-click	method	to
work	with	trace	files	instead	of	returning	to	the	Start	Page.
	

	Lab	1:	Use	Packets	to	Build	a	Picture	of	a	Network
When	you	are	analyzing	traffic,	try	to	get	a	feel	for	the	network	layout	from	what	you	can	learn	in	the
packets.	Who	is	sending	the	packets?	Who	are	the	targets?	What	are	their	MAC	and	IP	addresses?	If
multiple	hosts	talk	through	a	device,	it	is	likely	a	router.	Switches	are	transparent,	but	you	must	assume
that	clients	go	through	switches	to	reach	a	router.

In	this	lab	you	will	examine	the	MAC	and	IP	addresses	to	build	a	picture	of	a	portion	of	a	network.	In
addition,	you	will	look	at	the	Protocol	column	to	determine	what	applications	are	running	on	various
hosts.	Red	text	(visible	in	eBook	versions	only)	indicates	that	we	just	learned	this	information	from	the
current	frame.

Frame	1

Launch	Wireshark,	click	the	File	Open	button	 	on	the	main	tool	bar	and	double-click	on
general101.pcapng	to	open	this	file.

Examine	the	Packet	List	pane.	Frame	1	uses	IPv6.	Look	in	the	Ethernet	and	IP	headers	for	this	frame	in	the
Packet	Details	pane	(shown	below).	This	appears	to	be	an	IPv6	multicast	(note	the	IPv6mcast	designation
in	the	destination	Ethernet	address	field).

Frame	2

Frame	2	is	an	ARP	packet.	Look	inside	the	Ethernet	header	then	inside	the	ARP	portion	of	the	packet.
This	ARP	request	is	sent	to	locate	the	MAC	address	of	the	Target	IP	Address.

Frame	3

Frame	3	is	a	TCP	handshake	packet	to	the	HTTP	port.	Again,	look	in	the	Ethernet	header	and	IP	header	to
build	your	picture	of	the	network.	Since	the	target	has	not	responded,	we	really	can't	say	the	target	is
there.	We	will	mark	it	with	a	question	mark	until	we	see	it	talk	on	the	network.

Frame	4

Frame	4	is	the	reply	to	frame	3.	We	can	now	draw	in	the	new	HTTP	server	in	our	diagram.	Look	at	the
source	MAC	address	in	frame	4.	It	comes	from	the	router,	not	the	source	server.

Remember	that	routers	strip	off	the	received	MAC	header	and	apply	a	new	MAC	header.	The	new	MAC
header	contains	the	address	of	the	router's	interface	on	this	network	as	the	new	source	MAC	address	and
the	address	of	the	destination	device	as	the	new	destination	MAC	address.	This	is	how	a	router	forwards
a	packet.	On	your	local	network,	you	may	see	traffic	from	many	different	IP	addresses	come	from	the
MAC	address	of	the	local	router.

Frame	5	finishes	the	TCP	3-way	handshake.

Frame	6

Frame	6	is	a	Dropbox	LAN	Sync	Discovery	Protocol	(DB-LSB-DISC)	packet	from	our	client.	This
packet	is	sent	to	the	broadcast	address.

Frame	7

Frame	7	is	another	TCP	handshake	packet,	but	we	have	a	new	source	and	destination.	We	can	now	draw
in	a	new	source	MAC	and	IP	address	and	a	new	destination	IP	address.	We	must	wait	for	the	target	to
send	a	packet	before	we	say	it	is	definitely	there.

Frame	8

Frame	8	is	the	answer	from	the	HTTP	server	(199.59.150.9).	We	now	know	that	this	server	is	talking	on
the	wire.	Frame	9	is	the	final	piece	of	the	TCP	handshake.

Frame	10

Frame	10	indicates	that	the	other	local	host	is	trying	to	connect	to	another	server.	This	time	the	target	is
port	443,	the	HTTPS	port.

Frame	11

Frame	11	is	a	response	from	the	target.	We	can	now	assume	the	target	is	running.	Frame	12	finishes	the
TCP	handshake	and	our	drawing	of	the	network	we	discovered	just	by	looking	at	these	first	few	packets	in
the	trace	file.

As	you	can	see,	lots	of	different	conversations	are	occurring	simultaneously.	We	can	build	a	picture	of	the
network	based	on	the	packets	we	see.	Building	an	image	of	a	network	based	on	traffic	is	a	common	task

used	in	analysis.

0.9.	Analyze	Typical	Network	Traffic
What	is	"typical	network	traffic?"	That	is	a	loaded	question.	Every	network	is	different.	They	may	support
different	applications	and	have	different	network	designs.	There	are,	however,	some	common	packets	that
you'll	see	during	most	login	procedures	and	web	browsing	sessions.	There	are	also	some	basic	TCP/IP
resolutions	that	take	place	and	can	usually	be	seen	on	the	network.

Let's	just	take	a	look	at	what	you	might	see	in	a	typical	web	browsing	process	and	discuss	the	types	of
background	traffic	that	can	be	seen	as	well.

Analyze	Web	Browsing	Traffic
Open	http-google101.pcapng[11]	and	follow	along	as	we	look	at	the	traffic	generated	when	someone
visits	www.google.com[12].

In	a	typical	web	browsing	session,	your	trace	file	will	probably	include	a	DNS	request	to	resolve	a	host
name	to	an	IP	address	(referred	to	as	an	"A"	record)	[frame	1].	Hopefully	a	DNS	reply	will	be	sent	back
with	at	least	one	IP	address	associated	with	that	host	name	[frame	2].

If	the	client	supports	both	IPv4	and	IPv6,	you'll	see	a	request	to	find	an	IPv6	address	(referred	to	as	an
"AAAA"	record)	next	[frame	3].	The	DNS	server	will	respond	with	either	an	IPv6	address	or
miscellaneous	information	[frame	4].

Next	we	see	the	TCP	three-way	handshake	between	the	client	and	the	web	server	[frames	5,	6,	and	7]	and
then	the	client's	request	to	GET	the	main	page	("/")	[frame	8].	The	server	acknowledges	receipt	of	the
request	[frame	9]	and	sends	the	OK	response	[frame	10][13].	Now	the	server	begins	sending	the	main	page
to	the	client	[frame	11].

Periodically,	the	client	requests	another	element	of	the	www.google.com	page	[frame	36]	from	the	same
server.

In	addition,	when	there	is	a	link	on	www.google.com	to	another	web	site,	the	client	will	make	a	DNS
query	for	that	next	site	(as	in	frames	231,	232,	233,	for	example).	These	DNS	queries	are	triggered	when
the	JavaScript	menu	bar	is	loaded.

You	can	likely	see	the	relationship	between	the	DNS	queries	and	the	menu,	shown	below.

Continue	to	look	through	the	trace	file	to	get	a	feel	for	the	traffic	that	crosses	the	network	when	someone
opens	the	main	Google	page.

Analyze	Sample	Background	Traffic
You	will	surely	see	some	"background	traffic"	on	your	network.	Background	traffic	is	generated	when
automated	processes	run—no	user	interaction	is	required.	Background	traffic	can	be	seen	when	Java
looks	for	updates,	your	virus	detection	tool	looks	for	updates,	Dropbox	checks	in,	IPv6	tries	to	discover
IPv6	routers,	and	more.

Become	familiar	with	your	background	traffic	so	you	can	recognize	it	when	you	are
troubleshooting	problems.	You	don't	want	to	waste	time	troubleshooting	a	background	process	that	has
nothing	to	do	with	the	problem	at	hand.

Open	mybackground101.pcapng	to	look	at	the	background	traffic	seen	from	one	of	our	lab	machines.
Here	is	a	breakdown	of	the	background	traffic	on	our	lab	host.

Starting	at	frame	1,	we	see	traffic	to/from	67.217.65.244	(use	an	IP	address	lookup	site	such	as
DomainTools.com	to	check	the	address	and	you'll	see	this	is	Citrix)—sure	enough,	this	lab	host	is
running	GoToAssist,	GoToMeeting,	and	GoToMyPC	applets	which	are	all	owned	by	Citrix.
In	frame	25,	we	see	ICMPv6	Neighbor	Notifications	generated	by	the	IPv6	stack,	which	is	enabled
on	the	lab	host	(it	is	a	Windows	7	host).
In	frame	27,	we	see	a	Local	Master	Announcement.	If	we	expand	the	Packet	Details	pane,	we	learn
that	the	lab	host	is	called	VID02.
Starting	at	frame	28,	we	can	see	some	DNS	queries	for	javadl-esd-secure.oracle.com.	It	looks	like
our	host	is	updating	Java	from	an	Akamai	host	(we	expanded	the	Packet	Details	pane	to	look	inside
the	DNS	response	for	that	tidbit).
Frame	33	tells	us	that	there	is	an	IPv6	router	on	the	network—we	see	ICMPv6	Router	Advertisement
packets.
Frame	83	is	a	DHCP	ACK	broadcast	onto	the	network—it	indicates	the	domain	is	comcast.net—
yup,	that's	the	ISP	serving	the	lab	network.
Frame	95	is	an	SNMP	get-request	to	192.	168.1.105—we	don't	see	an	answer	anywhere	in	the	trace
file.	This	is	an	interesting	one.	It	seems	the	lab	host	is	configured	to	look	for	a	network	printer	by
that	address,	but	no	such	printer	exists.	(Guess	we	need	to	clean	off	that	machine	a	bit,	eh?).
Starting	at	frame	96,	we	learn	that	our	lab	host	is	also	running	Dropbox—we	see	some	Dropbox
LAN	Sync	Discovery	Protocol	traffic	in	there.
Starting	at	frame	118,	we	learn	the	lab	host	also	runs	Memeo	for	backup—we	see	some	HTTP	traffic
going	to	www.memeo.info	(frame	121	in	the	expanded	HTTP	part	of	the	Packet	Details)	and
api.memeo.info	(frame	134	in	the	expanded	HTTP	part	of	the	Packet	Details).

This	is	what	a	background	traffic	analysis	session	feels	like—looking	through	the	traffic	to	define	what	is
"normal."	Once	we	know	what	is	normal,	we	can	look	past	that	to	detect	what	is	abnormal.

For	example,	frame	411	doesn't	match	the	regular	traffic	we	expect	to	see	in	a	background	trace	file.

In	Figure	20,	we	see	an	incoming	TCP	connection	attempt	(SYN)	which	is	not	expected—this	is	a	client,
not	a	server.	In	the	Packet	Details	pane,	we	see	the	packet	is	sent	to	the	Secure	Shell	port	(22)—that's	a
bit	of	a	concern.	We	also	see	that	Wireshark	indicates	that	something	is	wrong	with	the	TCP	header—
there	is	an	illegal	value	in	the	Acknowledgment	Number	field.

Figure	20.	Finding	the	needle	in	the	haystack	isn't	difficult	if	you	know	the	haystack	well	and	can	just	move	it	aside.
[mybackground101.pcapng]

So	who	is	this	183.63.31.122	host?

Doing	a	bit	of	research	on	the	source	IP	address,	we	gather	the	following	information:

inetnum:	183.0.0.0-183.63.255.255
netname:	CHINANET	Guangdong	province	network
descr:	Data	Communication	Division
descr:	China	Telecom
country:	CN
status:	ALLOCATED	PORTABLE
remarks:	service	provider

And,	of	course,	this	address	popped	up	at	the	Internet	Storm	Center[14]	with	over	293,000	reports	of	folks
being	scanned	on	port	22	from	this	host.

Networks	can	be	pretty	noisy	with	various	background	processes	running,	but	if	you	can	spend	some	time
getting	familiar	with	the	"normal"	ones,	it	shouldn't	take	you	long	to	find	the	real	stinkers.

In	this	book	you	will	learn	a	lot	about	filtering.	Once	you	learn	what	is	"normal,"	consider	building	a
filter	to	remove	this	normal	traffic	from	view.	What	is	left	after	filtering	out	the	good	traffic	may	be
one	or	more	shiny	needles.

	Lab	2:	Capture	and	Classify	Your	Own	Background	Traffic
Take	a	moment	and	capture	your	own	background	as	we	did	in	this	section.	When	you	complete	your
capture,	perform	some	research	on	the	resulting	trace	file	to	see	if	you	can	characterize	all	the	traffic
to/from	your	machine	when	you	are	not	touching	the	keyboard.

Step	1:	Close	all	applications	except	for	Wireshark	and	any	normal	background	applications	that	run	on
your	machine.

Step	2:	Click	the	Capture	Interfaces	 	button	on	the	main	toolbar.

Step	3:	Select	the	checkbox	in	front	of	the	interface	that	sees	active	traffic.	If	you	don't	see	any	increases
in	the	packet	counts,	be	patient	or	toggle	out	to	the	command	prompt	to	ping	another	host.	You	might
recognize	your	active	interface	or	only	have	one	interface	to	select	from.

Step	4:	Click	Start.	Let	the	capture	run	for	at	least	five	minutes	(longer	if	you	can	wait).

Step	5:	Click	the	Stop	Capture	button	 	on	the	main	toolbar.

Spend	some	time	going	through	the	trace	file	to	identify	the	applications	that	run	in	the	background	on	your
machine.	Focus	on	the	Protocol	column	and	the	Info	column.

If	you	don't	recognize	the	application,	perform	some	research	on	the	IP	addresses	that	your	system
communicates	with.	Most	likely	you	will	also	see	broadcast	or	multicast	traffic	from	other	hosts	on	your
network.

Step	5:	To	save	this	file,	click	the	Save	button	on	the	main	toolbar,	navigate	to	the	target	directory,	and
name	your	file	background1.pcapng.

Recognizing	your	own	background	traffic	will	help	you	remove	this	from	consideration	when	looking	for
unusual	communications.	Consider	saving	trace	files	of	your	"normal"	traffic	to	refer	to	when
troubleshooting.

0.10.	Open	Trace	Files	Captured	with	Other
Tools
Although	Wireshark	is	considered	the	de	facto	standard	in	packet	capture	and	analysis	tools,	there	are
numerous	other	tools	available.	It	is	important	to	know	which	tools	can	interoperate	with	Wireshark.

When	someone	hands	you	a	trace	file,	you	can	use	File	|	Open	to	examine	the	traffic	in	Wireshark.
Wireshark	uses	its	Wiretap	Library	to	convert	the	file	into	a	format	that	Wireshark	can	display.	For
example,	if	you	receive	a	trace	file	captured	using	Sun	Snoop	(with	the	.snoop	file	extension),	Wireshark
uses	the	Wiretap	Library	to	perform	the	input/output	function—handing	the	frames	up	to	Wireshark	for
analysis.

Select	File	|	Open	(or	the	File	Open	button	on	the	main	toolbar)	and	click	on	the	arrow	next	to	the	Files
of	Type	area.	Wireshark	lists	all	the	file	types	recognized,	as	shown	in	Figure	21.

Figure	21.	Click	the	arrow	next	to	Files	of	type	to	see	all	the	trace	file	formats	that	Wireshark	recognizes.

If	someone	sends	you	a	trace	file	and	Wireshark	doesn't	recognize	the	format,	first	just	change	the	file
extension	to	.pcap	(the	old	default	trace	file	format)	and	try	to	open	it	in	Wireshark.	If	that	doesn't
work,	ask	them	what	#*$&@!	tool	they	used	to	capture	the	traffic!	Wireshark	understands	so	many
formats.	It	is	very	unusual	to	receive	a	trace	file	in	an	unrecognized	format.

	Lab	3:	Open	a	Network	Monitor	.cap	File
In	this	lab	you	will	use	Wireshark's	Wiretap	Library	to	open	a	file	captured	with	Microsoft's	Network
Monitor.

Step	1:	Click	the	File	Open	button	 	on	the	main	toolbar.

Step	2:	Navigate	to	your	trace	file	directory	and	click	on	http-winpcap101.cap.	Wireshark	looks	inside
the	trace	file	to	identify	what	tool	was	used	to	capture	the	traffic,	as	shown	below.	Although	this	file	was
captured	with	Microsoft's	Network	Monitor	(NetMon)	v3.4,	Wireshark	marks	it	as	NetMon	v2	because
that	is	the	format	v3.4	saves	in.

Step	3:	Click	Open.	Once	the	file	is	open,	select	File	|	Save	As	and	click	the	drop	down	menu	arrow	next
to	Files	of	Type.	Select	Wireshark	–	pcapng	(*pcapng;*.pcapng.gz;*.ntar;*.ntar.gz)	and	name	the	file
http–winpcap101.pcapng.

Wireshark	can	recognize	and	open	trace	files	created	with	most	other	industry	tools.	Once	open,	the	fact
that	this	trace	file	was	captured	with	Network	Monitor	is	transparent	to	you.

Chapter	0	Challenge
Open	challenge101-0.pcapng	and	use	the	techniques	covered	in	this	chapter	to	answer	these	Challenge
questions.	The	answer	key	is	located	in	Appendix	A.

We	will	focus	on	what	you	can	learn	about	communications	based	on	the	main	Wireshark	view.

Question	0-1.
How	many	packets	are	in	this	trace	file?

Question	0-2.
What	IP	hosts	are	making	a	TCP	connection	in	frames	1,	2,	and	3?

Question	0-3.
What	HTTP	command	is	sent	in	frame	4?

Question	0-4.
What	is	the	length	of	the	largest	frame	in	this	trace	file?

Question	0-5.
What	protocols	are	seen	in	the	Protocol	column?

Question	0-6.
What	responses	are	sent	by	the	HTTP	server?

Question	0-7.
Is	there	any	IPv6	traffic	in	this	trace	file?

Chapter	1	Skills:	Customize	Wireshark	Views
and	Settings

"To	me,	analyzing	networks	is	a	bit	like	practicing	a	sport	like	skiing	or	golf.	When	you	start,	it's
tough	and	a	bit	frustrating,	but	practice	and	persistence	will	make	you	accomplish	amazing	things.
Remember	that	becoming	a	master	is	a	matter	of	improving	your	skills,	but	also	of	getting	the	best
from	your	tools.	Don't	get	discouraged	if	things	seem	a	bit	overwhelming	at	the	beginning—you'll

improve	fast	and	it's	going	to	be	a	ton	of	fun!"

Loris	Degioanni
Creator	of	WinPcap	and	Cascade	Pilot®

Quick	Reference:	Overview	of	wireshark.org

1.	 Wireshark—About	Wireshark,	author	list,	feature	set,	awards
2.	 Get	Help—Q&A	Forum,	FAQ,	docs,	mailing	lists,	tools,	Wiki	page,	Bug	Tracker
3.	 Develop—Developers'	Guide,	browse	the	code,	latest	development	builds
4.	 Link	to	WinPcap	site
5.	 Indication	of	the	protocol	used	to	access	the	site	(IPv4	or	IPv6)
6.	 Main	link	to	the	download	page	(auto-detects	your	incoming	OS)
7.	 Link	to	training,	docs,	videos,	mirror	instructions,	export	regulations
8.	 Link	to	Riverbed,	owner	of	the	Wireshark	trademark
9.	 General	news	and	events	list
10.	 Gerald	Combs'	Wireshark	blog

1.1.	Add	Columns	to	the	Packet	List	Pane
Wireshark	contains	a	default	set	of	columns	that	provide	basic	information.	If	you	are	focused	on	a
particular	issue,	however,	adding	columns	can	help	you	quickly	detect	behavior	patterns.

There	are	two	ways	to	add	columns	to	the	Packet	List	pane—the	easy	way	and	the	hard	way.	You	should
know	both	methods	because	sometimes	columns	can't	be	created	using	the	easier	method.

Right-Click	|	Apply	as	Column	(the	"easy	way")
The	Packet	Details	pane	displays	the	fields	and	values	contained	in	the	frames.	Open	a	trace	file	and
right-click	on	the	Internet	Protocol	section	in	the	Packet	Details	pane.	Select	Expand	All	to	see	all	the
fields	in	the	entire	frame.

To	add	any	field	as	a	column,	right-click	on	the	field	and	select	Apply	as	Column,	as	shown	in	Figure	22.
In	this	example,	we	quickly	created	an	IP	Time	to	Live	(TTL)	column.

Figure	22.	Right-click	on	any	frame	field	and	select	Apply	as	Column.	[http-espn101.pcapng]

Edit	|	Preferences	|	Columns	(the	"hard	way")
If	you	don't	have	a	packet	that	contains	the	desired	field	for	the	right-click	method,	you'll	need	to	use	the
hard	way	to	build	columns.	Select	Edit	|	Preferences	|	Columns	to	see	the	existing	columns,	change	the
order	of	the	columns,	and	add	columns.	Click	on	the	arrow	to	the	right	of	the	Field	type	area	to	see	a	list
of	available	predefined	columns.

If	the	column	you	want	to	create	isn't	listed,	you	must	click	the	Add	button	and	select	Custom	as	the	field
type,	as	shown	in	Figure	23.	Finally,	you	must	enter	the	field	name	(ip.ttl)	and	which	occurrence	of	the
field	you	want	displayed	in	the	column	(if	the	field	occurs	more	than	once	in	a	packet).	Leave	the
occurrence	number	at	0	to	view	all	occurrences	of	a	field.	Click	on	the	Title	column	entry	to	type	in	the
new	column	heading.

It	is	much	easier	to	just	right-click	on	an	IP	TTL	field	and	select	Apply	as	Column.

Figure	23.	You	can	add,	edit,	and	rearrange	columns	in	the	Preferences	window.	We	clicked	and	dragged	the	Time	to	Live	column	to
place	it	above	the	Source	column.

Hide,	Remove,	Rearrange,	Realign,	and	Edit	Columns
You	can	use	the	Preferences	window	to	perform	functions	on	your	columns,	but	this	is	not	the	fastest	way
to	work	with	columns.	Close	the	Preferences	window	and	right-click	on	a	column	heading	in	the	Packet
List	pane	to	specify	alignment,	edit	the	column	title,	temporarily	hide	(or	display)	a	column,	or	even
delete	a	column.	Click	and	drag	windows	left	or	right	to	reorder	them.

For	example,	in	Figure	24,	we	are	working	with	http-espn101.pcapng.	We	right-clicked	on	our	new	Time
to	live	column	to	view	the	available	column	options.	If	we	do	not	want	to	use	this	column	again,	we	can
select	Remove	Column.

Adding	columns	to	the	Packet	List	pane	can	save	a	lot	of	time	when	you're	comparing	traffic
characteristics.	Be	careful	of	going	column-crazy,	however.	Wireshark	will	process	all	displayed	and
hidden	columns	when	it	opens	a	trace	file	or	applies	a	display	filter.	If	you	create	and	hide	30	different
columns,	Wireshark	is	going	to	be	much	slower	than	if	you	just	remove	and	recreate	the	columns	as	you
need	them.

Figure	24.	Right-click	on	a	column	heading	to	perform	basic	column	functions.	[http–espn101.pcapng]

Sort	Column	Contents
Columns	make	the	analysis	process	faster,	but	there	are	two	other	great	reasons	to	create	columns:
columns	can	be	sorted	and	column	data	can	be	exported.

Click	on	a	column	heading	once	to	sort	from	low	to	high	and	click	again	to	sort	from	high	to	low.	If	you
have	added	a	column	showing	the	delays	between	packets,	you	can	sort	this	column	to	quickly	find	the
largest	delays	in	the	trace	file.	We	will	use	this	technique	in	Configure	Time	Columns	to	Spot	Latency
Problems.

For	example,	in	Figure	25	we	opened	http-espn101.pcapng	and	right-clicked	once	on	the	Time	to	live
column	heading	to	sort	the	column	from	low	to	high.	Scrolling	to	the	top	of	the	trace	file,	we	determined
that	the	lowest	TTL	value	in	the	trace	file	is	44.

Figure	25.	We	sorted	the	Time	to	live	field	to	find	the	lowest	TTL	value	in	the	trace	file.	[http–espn101.pcapng]

Export	Column	Data
Another	great	reason	to	add	columns	to	the	Packet	List	pane	is	to	export	those	columns	for	analysis	with
another	tool.	For	example,	if	you	added	a	Time	to	Live	column,	you	can	select	File	|	Export	Packet
Dissections	and	choose	CSV	(comma-separated	value)	format.	Choose	to	export	only	the	Summary
information	and	you'll	end	up	with	a	CSV	file	containing	your	new	column	data.	You	can	now	open	this
CSV	file	in	a	spreadsheet	to	manipulate	the	data	further.	You	will	get	a	chance	to	practice	exporting	to
CSV	format	in	Lab	30	and	Lab	41.

	Lab	4:	Add	the	HTTP	Host	Field	as	a	Column
During	a	browsing	session,	an	HTTP	client	sends	requests	for	HTTP	objects	to	one	or	more	HTTP
servers.	In	each	of	the	requests,	the	client	specifies	the	name	or	the	IP	address	of	the	target	HTTP	server.
This	can	be	very	revealing.

Note:	All	frames	from	24.6.173.220	will	appear	with	a	black	background	and	red	foreground	if
Wireshark	is	set	to	validate	IP	header	checksums.	You	will	disable	this	feature	in	Lab	6.

Step	1:	Click	the	File	Open	button	 	on	the	main	toolbar	and	open	http–disney101.pcapng.

Step	2:	Scroll	down	in	the	Packet	List	pane	and	select	frame	15.

Step	3:	The	Packet	Details	pane	shows	the	contents	of	frame	15.	Click	the	+	in	front	of	Hypertext	Transfer
Protocol	to	expand	this	section	of	the	frame.

Step	4:	Right-click	on	the	Host	line	(which	contains	www.disney.com\r\n)	and	select	Apply	as	Column.
Your	new	Host	column	appears	to	the	left	of	the	Info	column.	You	can	click	and	drag	the	column	edges	to
widen	the	column.

Step	5:	Click	on	the	Host	column	twice	to	sort	from	high	to	low.

Step	6:	Click	the	Go	to	First	button	 	to	jump	to	the	top	of	the	sorted	trace	file.	You	can	now	easily	see
all	the	hosts	to	which	the	client	sent	requests,	as	shown	below.

Step	7:	Lab	Clean-up		Right-click	on	your	new	Host	column	heading	and	select	Hide	Column.	If	you
want	to	view	this	column	again,	right-click	any	column	heading	and	select	Displayed	Columns	|	Host
(http.host).

Adding	and	sorting	columns	are	two	key	tasks	that	can	shorten	your	analysis	time	significantly.	Why	go
searching	through	thousands	of	packets	when	you	can	have	Wireshark	quickly	gather	and	display	the
information	you	need?

1.2.	Dissect	the	Wireshark	Dissectors
Packet	dissection	is	one	of	the	most	powerful	features	of	Wireshark.	The	dissection	process	converts
streams	of	bytes	into	understandable	requests,	replies,	refusals,	retransmissions,	and	more.

Frames	are	handed	up	from	either	the	Capture	Engine	or	Wiretap	Library	to	the	Core	Engine.	The	Core
Engine	is	referred	to	as	the	"glue	code	that	holds	the	other	blocks	together."	This	is	where	the	real	work
begins.	Wireshark	understands	the	format	used	by	thousands	of	protocols	and	applications.	Wireshark
calls	on	various	dissectors	to	break	apart	fields	and	display	their	meanings	in	readable	format.

For	example,	consider	a	host	on	an	Ethernet	network	that	issues	an	HTTP	GET	request	to	a	web	site.	This
packet	will	be	handled	by	five	dissectors.

The	Frame	Dissector
The	Frame	dissector	(seen	in	Figure	26)	examines	and	displays	the	trace	file	basic	information,	such	as
the	timestamp	set	on	each	of	the	frames.	Then	the	Frame	dissector	hands	the	frame	off	to	the	Ethernet
dissector.

Figure	26.	The	Frame	dissector	displays	metadata	(extra	information)	about	the	frame.	[http–chappellu101.pcapng]

Every	once	in	a	while	a	dissector	bug	surfaces.	They	typically	appear	as	"exception	occurred"	in	the
Info	column	of	the	Packet	List	pane.	If	you	want	to	validate	the	bug,	you	can	search	for	the	protocol	as
a	keyword	on	the	Wireshark	Bug	Database	at	bugs.wireshark.org/bugzilla/.

http://bugs.wireshark.org/bugzilla/

The	Ethernet	Dissector	Takes	Over
The	Ethernet	dissector	decodes	and	displays	the	fields	of	the	Ethernet	II	header	and,	based	on	the	contents
of	the	Type	field,	hands	the	packet	off	to	the	next	dissector.	In	Figure	27,	the	Type	field	value	0x0800
indicates	that	an	IPv4	header	will	follow.	Notice	that	at	this	point,	when	we	remove	the	Ethernet	frame
from	the	dissection,	we	are	using	the	term	"packet."

Figure	27.	The	Ethernet	dissector	looks	at	the	Type	field	to	determine	the	next	required	dissector.	[http–chappellu101.pcapng]

The	IPv4	Dissector	Takes	Over
The	IPv4	dissector	decodes	the	fields	of	the	IPv4	header	and,	based	on	the	contents	of	the	Protocol	field,
hands	the	packet	off	to	the	next	dissector.	In	Figure	28,	the	Protocol	field	value	6	indicates	that	TCP	will
follow.

Figure	28.	The	IPv4	dissector	looks	at	the	Protocol	field	to	determine	the	next	required	dissector.	[http–chappellu101.pcapng]

The	TCP	Dissector	Takes	Over
The	TCP	dissector	decodes	the	fields	of	the	TCP	header	and,	based	on	the	contents	of	the	Port	fields,
hands	the	packet	off	to	the	next	dissector.	In	Figure	29,	the	destination	port	value	80	indicates	that	HTTP
will	follow.	We	will	see	how	Wireshark	handles	traffic	running	over	non-standard	port	numbers	in	the
next	section.

Figure	29.	The	TCP	dissector	looks	at	the	port	fields	to	determine	the	next	required	dissector.	[http–chappellu101.pcapng]

The	HTTP	Dissector	Takes	Over
In	this	example,	the	HTTP	dissector	decodes	the	fields	of	the	HTTP	packet.	There	is	no	embedded
protocol	or	application	inside	the	HTTP	packet,	so	this	is	the	last	dissector	applied	to	the	frame,	as
shown	in	Figure	30.

Figure	30.	The	HTTP	dissector	does	not	see	any	indication	that	the	packet	should	be	handed	off	to	another	dissector.	[http-
chappellu101.pcapng]

In	the	next	section	we	will	look	at	how	Wireshark	handles	traffic	running	over	a	non-standard	port
number.

1.3.	Analyze	Traffic	that	Uses	Non-Standard	Port
Numbers
Applications	running	over	non-standard	port	numbers	are	always	a	concern	to	network	analysts,	whether
the	application	is	intentionally	designed	to	use	those	non-standard	port	numbers	or	it	is	surreptitiously
trying	to	get	through	a	firewall.

When	the	Port	Number	is	Assigned	to	Another	Application
What	if	your	traffic	runs	over	a	non-standard	port	number	that	Wireshark	recognizes	as	used	by	another
application?	Wireshark	may	apply	the	wrong	dissector.	In	Figure	31,	we	have	an	FTP	communication
running	over	port	number	137.	Wireshark	recognizes	this	port	number	as	NetBIOS	Name	Service	traffic.

Normal	NetBIOS	traffic	does	not	look	like	this.	Wireshark	indicates	TCP	in	the	Protocol	column	while
placing	"netbios-ns"	in	the	port	area	of	the	Info	column.	Scrolling	through	this	file,	the	contents	in	the	Info
column	do	not	contain	normal	NetBIOS	Name	Service	details.

Figure	31.	When	an	application	uses	a	non-standard	port	that	Wireshark	recognizes,	the	incorrect	dissector	may	be	applied.	[tcp-
decodeas.pcapng]

Manually	Force	a	Dissector	on	the	Traffic
There	are	two	reasons	why	you	may	want	to	manually	force	a	dissector	onto	traffic:	(1)	if	Wireshark
applies	the	wrong	dissector	because	the	non-standard	port	number	is	already	associated	with	a	dissector
(as	we	see	in	Figure	31),	or	(2)	if	Wireshark	doesn't	have	a	heuristic	dissector	for	your	traffic	type.	We'll
look	at	heuristic	dissectors	next.

To	force	a	dissector	on	traffic,	right-click	on	the	undissected/incorrectly	dissected	packet	in	the	Packet
List	pane	and	select	Decode	As.	Select	the	Transport	tab	(showing	the	port	number	to	be	forcibly
dissected)	and	choose	the	desired	dissector.	You'll	practice	this	process	in	Lab	5.

When	the	Port	Number	is	not	Recognized
There	may	be	a	situation	when	traffic	runs	over	a	non-standard	port	number	that	is	not	assigned	to	another
application.	For	example,	perhaps	your	company	runs	web	services	on	port	48600.	Wireshark	doesn't
have	a	dissector	that	recognizes	this	port	number,	so	it	considers	the	bytes	following	the	TCP	header	as
just	"data."

In	this	case,	Wireshark	uses	heuristic	dissectors	to	try	to	decode	the	data	into	some	recognizable	protocol
or	application.

How	Heuristic	Dissectors	Work
Wireshark	hands	the	data	off	to	the	first	of	many	available	heuristic	dissectors,	as	illustrated	in	Figure
32.	Each	heuristic	dissector	looks	for	recognizable	patterns	in	the	data	to	figure	out	what	type	of
communication	is	contained	in	the	packet.	If	the	heuristic	dissector	doesn't	recognize	anything,	it	returns	a
failure	indication	to	Wireshark.	Wireshark	then	hands	the	data	off	to	the	next	heuristic	dissector.
Wireshark	continues	to	hand	the	data	off	to	heuristic	dissectors	until	(a)	a	heuristic	dissector	returns	an
indicator	of	success	and	decodes	the	traffic,	or	(b)	Wireshark	runs	out	of	heuristic	dissectors	to	try.

Figure	32.	Wireshark	applies	heuristic	dissectors	until	it	is	successful	or	simply	marks	the	undissected	bytes	as	"data".

Adjust	Dissections	with	the	Application	Preference	Settings	(if
possible)
If	you	know	that	certain	traffic,	such	as	HTTP	traffic,	runs	over	a	non-standard	port	on	your	network,	you
can	add	the	port	to	the	HTTP	protocol's	preference	settings.	For	example,	perhaps	you	want	Wireshark	to
dissect	traffic	to	or	from	port	81	as	HTTP	traffic.	Select	Edit	|	Preferences	|	(+)	Protocols	|	HTTP	and
add	81	to	the	port	list,	as	shown	in	Figure	33.

Figure	33.	We	added	port	81	to	the	list	of	TCP	ports	that	should	be	dissected	as	HTTP	traffic.

Not	all	application	preferences	have	configurable	port	values.	If	your	application	is	not	listed	in	the
Protocols	section,	or	your	application	does	allow	you	to	add	or	change	the	port	setting,	you	will	need	to
manually	force	a	dissector	on	the	traffic	as	shown	in	Manually	Force	a	Dissector	on	the	Traffic.

You	can	determine	that	Wireshark	is	unable	to	apply	a	dissector	to	some	of	your	frames	by	selecting
Statistics	|	Protocol	Hierarchy	and	looking	for	"data"	under	the	TCP	or	UDP	sections.	You	will	work
with	the	Protocol	Hierarchy	window	in	List	Applications	Seen	on	the	Network.

	Lab	5:	Configure	Wireshark	to	Dissect	Port	81	Traffic	as	HTTP
You	have	been	given	a	trace	file	that	contains	an	HTTP	session,	but	your	customer	uses	port	81	instead	of
port	80	on	their	HTTP	server.	In	this	lab	you	will	get	a	chance	to	enhance	Wireshark's	HTTP	dissection
capability	to	include	an	extra	port	number.

Note:	All	frames	from	24.6.173.220	will	appear	with	a	black	background	and	red	foreground	if
Wireshark	is	set	to	validate	IP	header	checksums.	You	will	disable	this	feature	in	Lab	6.

Step	1:	Open	http-nonstandard101.pcapng	and	examine	the	Packet	List	pane.	This	does	not	look	like
HTTP	traffic.	The	Protocol	column	simply	lists	TCP	for	all	the	packets.	Wireshark	indicates	that	traffic	is
being	sent	from	the	client	ports	50191	through	50197	to	port	81	(which	is	recognized	as	hosts2-ns	by
Wireshark's	services	file).	We	will	discuss	Wireshark's	services	file	in	the	next	section.

Step	2:	Click	on	the	Edit	Preferences	 	button	on	the	main	toolbar.

Step	3:	Expand	the	Protocols	section	and	type	HTTP	to	quickly	jump	to	that	configuration	area.	Add	81
to	the	port	number	list	and	click	OK.

Step	4:	Scroll	through	the	trace	file.	Your	traffic	is	now	dissected	as	TCP	(TCP	handshakes	and	ACKs)
and	HTTP.

Step	5:	Lab	Clean-up		Since	you	likely	do	not	have	HTTP	traffic	running	over	port	81,	return	to	the	HTTP
port	preference	setting,	and	remove	81.	Click	OK	to	save	your	new	setting.

Scroll	through	the	protocols	listed	in	the	Preferences	area.	There	are	many	applications	that	allow	setting
ports	in	this	manner.	This	is	an	easy	way	to	change	Wireshark's	dissection	methods.

1.4.	Change	how	Wireshark	Displays	Certain
Traffic	Types
Wireshark	is	a	well-formed	piece	of	clay.	Nevertheless,	it	is	in	a	default	state	when	you	install	it.
Customizing	Wireshark	will	make	you	and	your	analysis	sessions	more	effective.

You	learned	how	to	add	columns	using	the	Preferences	settings,	but	there	is	so	much	more	you	can	do.
Let's	take	a	look	at	these	key	preference	settings.

Set	User	Interface	Settings
Select	Edit	|	Preferences	|	User	Interface	to	change	many	of	the	basic	preferences	for	your	interface
here.	You	will	change	two	of	the	User	Interface	settings	in	Lab	6.

Set	Name	Resolution	Settings
Select	Edit	|	Preferences	|	Name	Resolution	to	view	or	change	the	way	Wireshark	deals	with	MAC
address,	port,	and	IP	address	resolution.

MAC	name	resolution:	By	default,	Wireshark	resolves	the	first	three	bytes	of	the	MAC	addresses	(the
OUI)	to	friendly	names	using	the	manuf	file	in	the	Wireshark	program	file	directory.

Transport	name	resolution:	Transport	names,	such	as	"ftp"	instead	of	port	21	are	resolved	using	the
services	file	in	the	Wireshark	program	file	directory	and	displayed	in	the	Info	column	of	the	Packet	List
pane.

Host	name	resolution:	If	you	want	Wireshark	to	resolve	host	names	(for	example,	showing
www.wireshark.org	instead	of	an	IP	address),	enable	Network	Name	Resolution.	Be	aware,	however,	that
enabling	this	setting	without	creating	a	hosts	file	for	Wireshark	to	use,	can	cause	Wireshark	to	send	DNS
Pointer	(PTR)	queries	to	obtain	host	names.	This	extra	traffic	will	show	up	in	your	trace	files	and	may
create	extra	work	for	your	DNS	server.[15]

You	can	also	set	name	resolution	through	View	|	Name	Resolution,	however	this	is	only	a	temporary
setting.	Settings	changed	in	the	Preferences	window	are	retained	with	the	current	profile.

Define	Filter	Expression	Buttons
You	can	select	Edit	|	Preferences	|	Filter	Expressions	to	save	your	favorite	display	filters	as	buttons	to
apply	them	more	quickly	to	your	trace	files.	There	is	a	faster	way	to	create	these	buttons,	however.	We
will	cover	the	process	of	making	Filter	Expression	buttons	in	Turn	Your	Key	Display	Filters	into
Buttons.

Set	Protocol	and	Application	Settings
Although	you	can	select	Edit	|	Preferences	|	(+)	Protocols	to	view	all	the	protocols	and	applications	that
contain	editable	settings,	the	right-click	method	is	a	faster	way	to	define	protocol	settings.	In	Lab	6	you
will	use	the	right-click	method	to	view	and	change	several	protocol	settings:

Allow	subdissector	to	reassemble	TCP	streams:	This	setting	is	enabled	by	default,	but	it	can	cause
problems	when	analyzing	HTTP	traffic.	If	an	HTTP	server	answers	a	client	request	with	a	response
code	(such	as	200	OK)	and	it	includes	some	of	the	requested	file	in	the	packet,	Wireshark	does	not
display	the	response	code.	Instead,	Wireshark	displays	"[TCP	Segment	of	a	Reassembled	PDU]"
(Protocol	Data	Unit).	We	would	much	rather	see	the	response	codes,	as	shown	below.

TCP	reassembly	enabled:

TCP	reassembly	disabled:

You	can	disable	the	TCP	reassembly	preference	setting	until	you	want	to	export	files	that	were
transferred	in	an	HTTP	communication	(see	View	all	HTTP	Objects	in	the	Trace	File).

Track	number	of	bytes	in	flight:	Data	bytes	that	are	sent	across	a	TCP	connection,	but	are	not
acknowledged	yet,	are	considered	"bytes	in	flight."	We	can	configure	Wireshark	to	show	us	how
much	unacknowledged	data	is	currently	seen	in	a	TCP	communication.	If	the	number	seems	to	hit	a
"ceiling,"	some	TCP	setting	may	be	limiting	data	flow	capabilities.	When	you	enable	this	setting,	a
new	section	(shown	below)	is	appended	to	the	TCP	header	section	in	the	Packet	Details	pane.	This
new	field	will	not	be	displayed	until	after	the	TCP	connection	is	established.

Track	number	of	bytes	in	flight	enabled:

Calculate	conversation	timestamps:	This	TCP	setting	tracks	time	values	within	each	separate	TCP
conversation.	This	enables	you	to	obtain	timestamp	values	based	on	the	first	frame	in	a	single	TCP
conversation	or	the	previous	frame	in	a	single	TCP	conversation.	When	you	enable	this	setting,	a
new	section	(shown	below)	is	appended	to	the	TCP	header	section	in	the	Packet	Details	pane.

You	will	enable	these	settings	in	Lab	6	and	examine	their	effect	on	the	Wireshark	Packet	List	pane	and
Packet	Details	pane.

	Lab	6:	Set	Key	Wireshark	Preferences	(IMPORTANT	LAB)[16]
Wireshark	offers	several	key	preference	settings	to	enhance	your	analysis	sessions.	In	this	lab	you	will
use	the	Edit	Preferences	button	on	the	main	toolbar	and	the	right-click	method	to	view	and	change	the
preference	settings.

These	are	the	settings	we	will	view	and	alter	in	this	lab:

Increase	the	number	of	display	filters	that	Wireshark	will	remember.
Increase	the	number	of	recently	opened	files	that	Wireshark	will	remember.
Ensure	IP,	UDP,	and	TCP	checksum	validations	are	disabled.
Enable	the	TCP	Calculate	conversation	timestamps	setting.
Enable	the	TCP	Track	number	of	bytes	in	flight	setting.
Disable	the	TCP	Allow	subdissector	to	reassemble	TCP	streams	setting.

Note:	Your	Wireshark	system	should	retain	all	of	these	settings	through	the	rest	of	this	book	with	the
exception	of	the	TCP	Allow	subdissector	to	reassemble	TCP	streams	setting,	which	you	will	work	with
during	various	labs.

Step	1:	Open	http-pcaprnet101.pcapng.

Step	2:	Click	the	Edit	Preferences	button	 	on	the	main	toolbar.

Step	3:	Change	both	the	Filter	display	max.	list	entries	and	"Open	Recent"	max.	list	entries	settings	to
30.	These	two	settings	allow	you	to	quickly	recall	more	of	your	recent	filter	settings	and	opened	files.

Step	4:	Click	OK.	This	automatically	applies	and	saves	your	settings	in	this	Default	profile	and	closes
the	Preferences	window.	Next	we	will	use	the	right-click	method	to	check	and	change	the	IP,	UDP,	and
TCP	settings.	The	first	task	is	to	disable	IP,	UDP,	and	TCP	checksum	validation.	These	three	checksum
validations	should	already	be	disabled	unless	you	updated	Wireshark	while	retaining	previous	settings.

Step	5:	With	frame	1	selected	in	the	Packet	List	pane,	right-click	on	the	Internet	Protocol	section	of	the
Packet	Details	pane	and	hover	over	the	Protocol	Preferences	option	on	the	drop-down	menu.	If	this
setting	is	enabled	(checked),	click	on	the	Validate	the	IPv4	checksum	if	possible	setting	to	disable	it.		

Step	6:	Again,	in	frame	1,	right-click	the	User	Datagram	Protocol	section	of	the	Packet	Details	pane	and
hover	over	the	Protocol	Preferences	option	from	the	drop-down	menu.	Uncheck	Validate	the	UDP
checksum	if	possible	setting	if	it	is	currently	enabled.

Step	7:	Select	frame	5	in	the	Packet	List	pane.	Right-click	the	Transmission	Control	Protocol	section	of
the	Packet	Details	pane	and,	under	Protocol	Preferences,	disable	the	Validate	the	TCP	checksum	if
possible	setting	if	it	is	currently	enabled.

Step	8:	Since	Wireshark	closes	the	TCP	protocol	settings	menu	after	you	select	an	option,	you	must	right-
click	again	on	the	Transmission	Control	Protocol	section	of	the	Packet	Details	pane	to	change	the
following	additional	settings.

disable	Allow	subdissector	to	reassemble	TCP	streams
enable	Track	number	of	bytes	in	flight
enable	Calculate	conversation	timestamps

Step	9:	Now	let's	see	how	a	few	of	these	settings	affect	the	packet	displays.	Click	on	frame	8	in	http-
pcaprnet101.pcapng.	Expand	the	Transmission	Control	Protocol	line,	the	SEQ/ACK	analysis,	and
Timestamps	section	in	the	Packet	Details	pane.	We	can	see	that	Wireshark	is	not	validating	the	TCP
checksum	and	that	287	bytes	of	data	have	been	sent,	but	not	acknowledged.	In	addition,	we	can	see	that
this	frame	arrived	about	20	milliseconds	(0.020	seconds)	after	the	first	frame	of	the	TCP	conversation
(also	referred	to	as	the	TCP	stream)	and	778	microseconds	(0.000778	seconds)	after	the	previous	frame
of	this	TCP	conversation.

You	can	easily	use	the	right-click	method	to	change	protocol	preferences,	such	as	tracking	time	in	each
TCP	conversation	and	the	number	of	unacknowledged	bytes	in	a	conversation.	There	are	many	other
application	and	protocol	preference	settings	that	can	be	set	in	either	the	Preferences	window	or	through
the	right-click	method.

1.5.	Customize	Wireshark	for	Different	Tasks
(Profiles)
There	are	certain	customization	characteristics	that	fit	troubleshooting	tasks	while	other	customized
settings	may	fit	network	forensics	tasks.	Profiles	enable	you	define	separate	Wireshark	configurations	for
these	different	analysis	processes.

The	Basics	of	Profiles
Profiles	are	basically	directories	that	contain	Wireshark	configuration	and	support	files	that	are	loaded	by
Wireshark	when	you	select	to	work	in	each	profile.	For	example,	you	may	create	a	profile	focused	on
security	concerns.	This	"security	profile"	may	contain	filters	to	display	all	ICMP	traffic	or	connection
attempts	traveling	in	the	direction	of	clients	(as	opposed	to	servers)	and	coloring	rules	that	highlight
suspicious	traffic	that	contains	known	signatures.

Create	a	New	Profile
Right-click	on	the	Profile	column	in	the	Status	Bar	and	select	New	to	create	a	new	profile	and	name	it
Troubleshooting.	All	the	capture	filter	settings,	display	filter	settings,	coloring	rules,	columns,	and
preference	settings	you	set	now	will	be	saved	in	that	Troubleshooting	profile.	Alternately	you	can	select
Edit	|	Configuration	Profiles...	to	create	a	new	profile.[17]

The	name	of	the	profile	you	are	working	in	is	displayed	in	the	right-hand	column	of	the	Status	bar.	In
Figure	34,	we	are	working	in	our	Troubleshooting	profile.	Consider	creating	a	different	profile	for
security	analysis,	WLAN	analysis,	or	any	other	type	of	analysis	functions	you	perform.

Figure	34.	The	right	column	in	the	Status	Bar	indicates	the	profile	in	use.

Profiles	are	a	collection	of	simple	text	files	that	define	preference	settings,	capture	filters,	display
filters,	coloring	rules,	and	more.	If	you	want	to	copy	part	or	all	of	a	profile	to	another	Wireshark	host,
simply	copy	the	profile	directory	(or	the	individual	files	in	the	profile's	directory)	to	the	other	host.

	Lab	7:	Create	a	New	Profile	Based	on	the	Default	Profile
Profiles	enable	you	to	work	with	customized	settings	to	be	more	efficient	when	analyzing	traffic.	In	this
lab	you	will	create	a	new	profile	called	"wireshark101."	You	will	base	it	on	your	Default	profile	to
ensure	any	previously	created	settings	will	be	copied	over	to	your	new	profile.

Step	1:	Right-click	on	the	Profile	column	in	the	Status	Bar	and	select	New.

Step	2:	Select	Default	from	the	drop	down	list	of	available	profiles	and	name	your	profile
wireshark101.

Step	3:	Click	OK.	Wireshark	now	displays	your	new	profile	in	the	Status	Bar.

In	Lab	6	we	worked	with	some	key	preference	settings	(such	as	Track	number	of	bytes	in	flight	and
Calculate	conversation	timestamps)	in	the	Default	profile.	Since	your	new	profile	is	based	on	the
Default	profile,	these	preference	settings	are	also	set	in	your	wireshark101	profile.

Wireshark	remembers	the	last	profile	used	when	it	is	restarted.	To	change	to	another	profile,	click	on	the
Profile	area	of	the	Status	Bar	and	select	another	profile.

1.6.	Locate	Key	Wireshark	Configuration	Files
Wireshark	configuration	settings	are	stored	in	two	places:	the	global	configuration	directory	and	the
personal	configuration	directories.	Learning	where	Wireshark	stores	settings	enables	you	to	quickly	alter
settings	or	share	individual	configurations	with	other	people	or	other	Wireshark	systems.

The	location	of	these	directories	may	be	different	based	on	the	operating	system	on	which	Wireshark	is
installed.	Select	Help	|	About	Wireshark	|	Folders	to	locate	these	directories	on	your	system,	as	shown
in	Figure	35.

Figure	35.	Use	Help	|	About	Wireshark	|	Folders	to	find	your	configuration	files.

Your	Global	Configuration	Directory
The	global	configuration	directory	contains	the	default	configuration	for	Wireshark.	When	you	create	a
new	profile	(without	copying	an	existing	profile),	Wireshark	pulls	the	basic	settings	from	the	files	in	the
global	configuration	directory.

The	following	lists	some	of	the	files	that	may	be	found	in	your	configuration	directories:

preferences	contains	the	settings	defined	when	you	select	Edit	|	Preferences;	this	includes	name
resolution	settings,	Filter	Expression	button	settings,	and	protocol	settings.
dfilters	contains	the	display	filters	for	a	profile.
cfilters	contains	the	capture	filters	for	a	profile.
colorfilters	contains	the	coloring	rules	for	a	profile.
recent	contains	miscellaneous	settings	such	as	column	widths,	zoom	level,	toolbar	visibility,	and	the
recent	directory	used	for	loading	trace	files.

Your	Personal	Configuration	(and	profiles)	Directory
When	you	make	changes	to	the	Default	profile	or	create	and	customize	other	profiles,	Wireshark	stores
those	changes	in	your	personal	configuration	directories.

The	configuration	files	for	any	customized	settings	made	to	the	Default	profile	reside	directly	in	your
personal	configuration	directory.	When	you	build	your	first	custom	profile,	Wireshark	creates	a	profiles
directory	in	your	personal	configuration	directory.

Inside	that	profiles	directory,	you	will	see	one	directory	for	each	of	your	custom	profiles.	Figure	36
shows	the	directory	structure	of	a	Wireshark	system	that	has	three	profiles	named	security,
troubleshooting,	and	voip.

Figure	36.	Custom	profiles	(and	their	configuration	files)	are	stored	under	the	profiles	directory.

Don't	be	afraid	to	edit	the	configuration	files.	They	are	just	text	files	that	can	be	altered	in	a	text
editor.	Now	that	we've	addressed	that	issue,	notice	that	if	you	open	up	the	colorfilters	file	in	a	text
editor	such	as	Notepad,	you	will	see	a	message	that	reads,	"#	DO	NOT	EDIT	THIS	FILE!	It	was
created	by	Wireshark"	at	the	top	of	the	file.	Disregard	that	message—there	is	no	reason	to	avoid
editing	this	file	in	a	text	editor.	Manual	changes	will	be	visible	when	you	reload	the	profile.

	Lab	8:	Import	a	DNS/HTTP	Errors	Profile
Once	you've	created	that	fabulous	profile	that	detects	various	types	of	HTTP	or	DNS	problems	perhaps,
consider	installing	that	profile	on	your	other	Wireshark	systems.	Since	Wireshark	bases	profiles	on	text
files,	this	is	a	simple	process.

Step	1:	Visit	www.wiresharkbook.com	and	download	the	sample	profile	(httpdnsprofile.zip).	This	new
profile's	directory	and	contents	are	zipped	into	a	single	file.

Step	2:	Select	Help	|	About	Wireshark	|	Folders.	Double-click	on	your	personal	configuration	folder	to
examine	the	directory	structure.

Step	3:	As	mentioned	earlier,	Wireshark	creates	a	profiles	directory	when	you	build	your	first	custom
profile	(as	you	did	in	Lab	7).	If	you	do	not	see	a	profiles	directory	at	this	point,	you	can	manually	create
one	or	return	to	and	complete	Lab	7.	Open	the	profiles	directory.

Step	4:	Extract	the	httpdnsprofile.zip	file	into	this	profiles	directory	and	extract	the	file	to	this	location.
You	should	see	a	new	directory	called	HTTP-DNS_Errors.	Look	inside	this	new	directory	to	see	the
Wireshark	configuration	files	included	in	this	profile.

Step	5:	Return	to	Wireshark	and	click	on	the	Profile	column	on	the	Status	Bar.	You	should	see	the	new
profile	listed.	Click	on	the	HTTP-DNS_Errors	profile	to	examine	this	new	profile.

Step	6:	Open	dns-nmap101.pcapng	while	working	in	your	HTTP-DNS_Errors	profile.	You	should	see
some	interesting	colors	in	the	trace	file	and	two	new	buttons	in	the	display	filter	area.

Step	7:	Lab	Clean-up		Click	the	Profile	column	on	the	Status	Bar	and	select	your	wireshark101	profile.
You	will	continue	to	enhance	the	wireshark101	profile	in	upcoming	chapters	of	this	book.

Since	profiles	are	simply	a	collection	of	configuration	text	files,	it	is	easy	to	move	single	elements	of	a
profile	(or	entire	profiles)	to	other	machines.

Some	configuration	text	files,	such	as	the	recent	configuration	file,	contain	directory	paths.	This	may
generate	Wireshark	startup	errors	when	you	move	these	types	of	configuration	files	to	another	system
that	does	not	have	the	same	directory	paths	in	place.	You	could	either	avoid	moving	these	files	to
another	system	or	edit	the	recent	configuration	file	to	match	the	directory	structure	of	the	target
system.

1.7.	Configure	Time	Columns	to	Spot	Latency
Problems
Latency	is	a	measurement	used	to	define	time	delay.	As	a	host	sends	a	request	and	waits	for	a	reply,	there
is	always	some	latency.	Excessive	latency	can	be	caused	by	problems	along	a	path	or	at	the	endpoints.

The	Time	column	and	Info	column	can	be	used	to	detect	three	specific	types	of	latency—path	latency,
client	latency,	and	server	latency.

The	Indications	and	Causes	of	Path	Latency
Path	latency	is	often	referred	to	as	round	trip	time	(RTT)	latency	because	we	often	measure	how	long	it
takes	for	some	packet	to	be	transmitted	and	the	response	to	be	received.	Using	this	measurement	process,
we	can't	tell	if	slow	performance	is	in	the	outbound	or	the	inbound	direction.	We	just	know	it	is	slow
somewhere	along	the	path	between	two	devices.

Path	latency	can	be	caused	by	an	infrastructure	device,	such	as	an	enterprise	router,	that	is	prioritizing
(quality	of	service)	traffic.	If	your	low-priority	traffic	arrives	at	such	a	device	when	high-priority	traffic
is	flowing	through,	your	lowly	traffic	may	be	queued	for	a	bit	while	the	mucky-mucks	go	flying	through.

Path	latency	and	packet	loss	can	also	be	caused	when	there	is	a	bandwidth	bottleneck	on	a	network.	For
example,	if	you	connect	two	heavily-loaded	gigabit	networks	together	with	a	10	Mbps	link,	it's	like
connecting	two	fire	hoses	together	with	a	garden	hose[18].

On	Wireshark,	we	can	see	path	latency	by	looking	at	the	first	two	packets	of	a	simple	TCP	three-way
handshake,	as	shown	in	Figure	37.	Capture	close	to	the	client	and	watch	the	client	send	a	SYN	packet	to
the	server.	How	much	time	goes	by	before	the	SYN-ACK?	We	will	look	at	a	trace	file	that	has	high	path
latency	in	this	section.

Figure	37.	Identify	path	latency	by	looking	at	the	round	trip	time	(RTT)	between	the	SYN	and	SYN/ACK	of	a	TCP	three-way
handshake.

The	Indications	and	Causes	of	Client	Latency
High	client	latency	can	be	caused	by	users,	applications	or	a	lack	of	sufficient	resources.	There	is	the
natural	"human-induced"	latency	(when	you	wait	for	a	user	to	click	on	something	on	their	screen),	but
there's	not	much	we	can	do	about	that.	We	are	looking	for	client	latency	problems	caused	by	sluggish
client	applications.

Of	the	three	latency	problems	mentioned	(path,	client	and	server	latency),	this	is	the	one	that	is	seen	least
often.	Most	applications	put	the	load	on	the	server	side	of	the	communications.	If,	however,	you	happen	to
have	an	application	that	balances	the	work	load	between	the	client	and	the	server,	then	we	have	to
consider	the	client	response	times.

In	Wireshark,	client	latency	is	indicated	when	we	see	a	large	delay	before	a	packet	from	the	client
(ignoring	delays	due	to	user	interactions),	as	shown	in	Figure	38.

Figure	38.	Watch	for	delays	before	client	requests,	but	don't	worry	about	delays	while	we	wait	for	a	user	to	enter	something	on	their
keyboard.

The	Indications	and	Causes	of	Server	Latency
Server	latency	occurs	when	a	server	is	slow	replying	to	incoming	requests.	This	could	be	caused	by	a
lack	of	processing	power	at	the	server,	a	faulty	(or	poorly	written)	application,	the	requirement	to	consult
another	server	to	get	the	response	information	(multi-tiered	or	middleware	architecture),	or	some	other
type	of	interference	delaying	the	server	responses.

On	Wireshark,	we	can	identify	server	latency	by	watching	a	client	request	heading	to	the	server,	a	quick
acknowledgment	from	the	server,	and	then	a	significant	wait	time	before	the	requested	information	is
received,	as	shown	in	Figure	39.	Sadly,	this	is	becoming	more	common	on	networks	as	servers	are
required	to	support	more	applications	without	getting	the	required	upgrades.

Figure	39.	Watch	for	delays	between	server	ACKs	and	responses.

Detect	Latency	Problems	by	Changing	the	Time	Column	Setting
The	default	Time	column	setting	is	Seconds	Since	Beginning	of	Capture.	In	essence,	Wireshark	marks	the
first	packet's	arrival	as	0.000000000.	The	Time	column	value	for	each	packet	after	the	first	one	is	based
on	how	much	later	it	arrived	during	the	capture	process.

To	spot	high	delta	times	(the	time	from	the	end	of	one	packet	to	the	end	of	the	next	packet),	select	View	|
Time	Display	Format	|	Seconds	Since	Previous	Displayed	Packet.	This	setting	will	be	retained	with	the
profile	in	which	you	are	working.

After	changing	this	setting,	click	the	Time	column	twice	to	sort	from	high	to	low	to	look	for	large	delays
in	the	trace	file.

In	Figure	40,	we	opened	http-openoffice101b.pcapng,	set	the	Time	column	to	Seconds	Since	Previous
Displayed	Packet,	and	sorted	the	Time	column	from	high	to	low.	The	first	packet	that	appears	is	a
SYN/ACK—the	second	packet	of	the	TCP	handshake.	This	trace	file	was	taken	at	the	client	and	this	is	a
perfect	indication	of	path	latency.

In	essence,	this	delay	before	the	SYN/ACK	packet	indicates	it	took	almost	1/4	of	a	second	(.226388
seconds)	to	get	to	the	HTTP	server	and	back.	You	might	as	well	walk	there![19]

Figure	40.	Sort	the	Time	column	after	setting	it	to	Seconds	Since	Previously	Displayed	Packet.	[http–openoffice101b.pcapng]

This	method	is	great	when	you	have	a	single	conversation	in	the	trace	file,	but	if	you	have	numerous
UDP/TCP	conversations,	the	Seconds	Since	Previous	Displayed	Packet	setting	can	hide	problems.

For	example,	consider	what	this	column	would	display	if	you	had	five	different	conversations	intertwined
in	the	trace	file.	The	Time	column	is	now	measuring	the	delta	time	between	each	of	the	packets	with	no
regard	to	the	fact	that	there	are	five	different	intertwined	conversations.	We	would	want	to	see	delays
inside	the	separate	conversations.

Detect	Latency	Problems	with	a	New	TCP	Delta	Column
In	Lab	6,	you	enabled	the	Calculate	conversation	timestamps	TCP	preference	in	the	Default	profile	by
selecting	Edit	|	Preferences	|	(+)	Protocols	|	TCP.	In	Lab	7,	you	created	your	wireshark101	profile
based	on	the	Default	profile	so	you	should	already	have	this	setting	in	place.	Now	we	will	look	at	how
we	can	create	a	column	based	on	that	preference	setting	so	we	can	obtain	separate	delta	time	values	for
each	conversation.

To	add	a	column	for	the	TCP	delta	time	value,	expand	a	TCP	header.	Right-click	on	the	Time	since
previous	frame	in	this	TCP	stream	and	select	Apply	as	Column,	as	shown	in	Figure	41.	You	now	have
a	new	column	in	the	Packet	List	pane.

Figure	41.	Enable	Calculate	conversation	timestamps	and	add	a	new	column	to	spot	delays	inside	individual	TCP	conversations.
[http–openoffice101b.pcapng]

This	new	column	name	is	too	long.	To	rename	a	column,	right-click	the	column	heading	and	select	Edit
Column	Details.	Type	the	new	column	name	in	the	Title	field	and	click	OK	to	save	the	new	name.	In
Figure	42,	we	named	our	new	column	TCP	Delta.

Figure	42.	Right-click	on	a	column	heading	and	choose	Edit	Column	Details	to	change	the	column	name.	[http–
openoffice101b.pcapng]

Let's	examine	the	difference	between	the	Time	column	value	and	the	TCP	Delta	column	in	a	new	trace
file.

In	Figure	43,	we	opened	http-pcaprnet101.pcapng,	clicked	on,	and	dragged	the	new	TCP	Delta	column
to	the	right	of	the	existing	Time	column.	We	sorted	on	the	Time	column	from	high	to	low	to	see	the
difference	in	time	values	between	the	Time	column	and	TCP	Delta	column.

Figure	43.	SYN	packets	show	up	as	high	latency	in	this	trace	file,	but	these	are	false	positives	[http–pcaprnet101.pcapng]

Before	we	sort	on	the	TCP	Delta	column	to	find	delays	inside	individual	TCP	conversations,	let's
consider	why	some	delays	can	be	considered	normal.

Don't	Get	Fooled—Some	Delays	are	Normal
We	can	see	several	large	delays	at	the	top	of	the	list.	In	our	browsing	session	to	pcapr.net,	these	delays
downloading	images	are	not	even	noticed	by	the	user.	Just	like	the	loading	of	an	.ico	file	(which	appears
as	an	icon	on	the	browser	tab)	would	not	be	noticed.

Don't	focus	on	the	following	packet	types.	It's	not	unusual	to	have	delays	preceding	these	packets.

.ico	file	requests	are	eventually	launched	by	the	browser	to	put	an	icon	on	your	browser	tab.
SYN	packets	are	sent	to	establish	a	new	connection	with	a	TCP	peer.	You	may	begin	capturing	and
then	ask	a	user	to	connect	to	a	web	server.	There	will	be	a	delay	before	the	first	packet	of	the	TCP
connection	(the	SYN	packet).
FIN,	FIN/ACK,	RST,	or	RST/ACK	packets	are	sent	to	either	implicitly	or	explicitly	terminate	a
connection.	Browsers	send	these	packets	when	you	click	on	another	tab	or	when	there	has	been	no
recent	activity	to	a	site	or	when	the	browsing	session	is	configured	to	automatically	close	after	a
page	has	loaded.	Users	do	not	notice	these	delays.
GET	requests	can	be	generated	when	a	user	clicks	on	a	link	to	request	the	next	page.	Other	times,
some	GET	requests	may	be	launched	by	background	processes	that	have	no	priority	whatsoever
(such	as	in	the	.ico	file	GET	requests).
DNS	queries	may	be	sent	at	various	times	during	a	web	browsing	session,	such	as	when	a	page	that
has	numerous	hyperlinks	loads	at	the	client.
TLSv1	encrypted	alerts	are	often	seen	just	before	a	connection	close	process	(TCP	Resets).
Although	encrypted,	the	alert	is	likely	a	TLS	Close	request.

In	Figure	44,	we	are	still	working	in	http-pcaprnet101.pcapng.	Previously,	we	sorted	based	on	the	Time
column.	Now,	when	we	sort	the	TCP	Delta	column	from	high	to	low	we	notice	the	18	second	delay
before	the	three	background	graphics	are	requested.	That	common	delay	is	typical	of	a	background
process.	The	FIN/ACK	packets	are	never	a	concern	as	they	happen	transparently	in	the	background	to
time	out	a	TCP	connection.

The	OK	responses	in	frame	20	and	432[20],	however,	are	a	very	real	concern.	This	is	high	server	latency.
In	this	trace	file,	there	are	delays	of	1.898091	seconds	and	1.780574	seconds	that	are	worth	looking	into.
We	don't	expect	such	large	delays	before	the	server	sends	the	required	web	page	element.	The	server	is
either	overloaded,	it	doesn't	hold	the	information	locally,	or	perhaps	the	requested	element	is	located	in	a
database	that	needs	to	be	queried	before	responding.

In	this	situation,	the	latter	is	the	case.	When	you	load	the	pcapr.net	web	site	and	type	in	a	protocol	or
application	name,	that	value	is	used	to	search	a	database	for	entries	that	match	your	query.

Also	see	Use	Filters	to	Spot	Communication	Delays.

Figure	44.	Sort	your	TCP	Delta	column	from	high	to	low	when	looking	for	delays	in	individual	TCP	conversations.	[http–
pcaprnet101.pcapng]

When	you	approach	a	complaint	that	the	network	is	slow,	always	look	at	the	latency	times	to	see	if	that	is
part	of	the	problem.	If	an	application	runs	over	TCP,	we	can	detect	path	and	server	latency	by	looking	at
the	delay	between	the	SYN	and	the	SYN/ACK	(path	latency)	and	the	delay	between	an	ACK	from	the
server	(acknowledging	a	request	from	a	client)	and	the	actual	data	that	follows.

	Lab	9:	Spot	Path	and	Server	Latency	Problems
Let's	practice	using	these	two	columns	to	detect	latency.	In	this	lab	you	will	set	the	Time	column	to
Seconds	Since	Previous	Displayed	Packet	and	add	the	TCP	Delta	column.

You	may	have	some	of	these	columns	set	already	if	you	followed	along	with	the	previous	section.

Step	1:	Open	http-slow101.pcapng.

Step	2:	Right-click	the	Length	column	heading	and	select	Hide	Column.	This	provides	more	room	for
your	new	column.

Step	3:	Select	View	|	Time	Display	Format	|	Seconds	Since	Previous	Displayed	Packet.	Click	on	your
Time	column	heading	twice	to	sort	from	high	to	low.	Scroll	to	the	top	of	the	list.	We	can	see	some	very
high	delays	in	this	trace	file.

Now	let's	see	what	happens	when	we	add	and	work	with	a	column	that	depicts	TCP	conversation
timestamps.

Step	4:	Click	on	the	No.	(Number)	column	heading	to	return	the	trace	file	to	its	default	sort	order.	Scroll
up	or	click	the	Go	To	the	First	Packet	button	on	the	main	toolbar	to	go	to	frame	1.

Step	5:	Right-click	the	TCP	header	in	the	Packet	Details	pane	of	frame	1	and	select	Expand	Subtrees.
Scroll	down	and	right-click	on	the	Time	since	previous	frame	in	this	TCP	stream	and	select	Apply	as
Column.	You	now	have	a	new	column	in	the	Packet	List	pane,	as	shown	below.

Step	6:	Right-click	on	the	new	column	and	select	Edit	Column	Details.	Type	TCP	Delta	in	the	Title	area
and	click	OK.

As	we	sort	on	the	TCP	Delta	column,	keep	in	mind	the	types	of	traffic	that	can	contain	"normal	delays"	as
listed	in	Don't	Get	Fooled—Some	Delays	are	Normal.

Step	7:	Click	on	your	new	TCP	Delta	column	heading	and	drag	the	column	to	the	right	of	the	existing
Time	column.	Click	twice	on	your	new	TCP	Delta	column	heading	to	sort	from	high	to	low.	Since	there
are	multiple	TCP	conversations	intertwined	in	this	trace	file,	this	TCP	Delta	column	gives	an	accurate
display	of	latency	times	in	the	trace	file.

In	the	image	below,	we	scrolled	to	the	right	to	view	more	of	the	Info	column	(our	Time	column	is	no
longer	in	view).

Do	you	see	anything	in	common	with	the	top	delays	in	the	traffic?	There	are	several	very	large	delays
before	the	HTTP	server	said	"OK."	You	can	probably	imagine	that	the	user	would	complain	about	terrible
performance	when	browsing	to	this	web	site.

Step	8:	Lab	Clean-up		Click	once	on	the	No.	(Number)	column	heading	to	sort	from	low	to	high.	This	is
the	original	sorting	order	of	trace	files.

Right-click	on	the	TCP	Delta	column	heading	and	select	Hide	Column.	If	you	want	to	view	this	column
again	later,	you	can	right-click	on	any	column	heading	and	select	Display	Columns	|	TCP	Delta.

Look	at	the	TCP	delta	times	in	your	web	browsing	sessions,	network	logins,	or	email	traffic.	Get	a	feel
for	the	round	trip	latency	times	from	your	client	to	numerous	hosts.

Chapter	1	Challenge
Open	challenge101-1.pcapng	and	use	the	techniques	covered	in	this	chapter	to	answer	these	Challenge
questions.	The	answer	key	is	located	in	Appendix	A.

Important:	This	trace	file	includes	an	HTTP	communication	running	over	a	non-standard	port	number.
Before	you	can	answer	these	questions,	you	must	force	Wireshark	to	dissect	this	traffic	as	HTTP.

Question	1-1.
In	which	frame	number	does	the	client	request	the	default	web	page	("/")?

Question	1-2.
What	response	code	does	the	server	send	in	frame	17?

Question	1-3.
What	is	the	largest	TCP	delta	value	seen	in	this	trace	file?

Question	1-4.
How	many	SYN	packets	arrived	after	at	least	a	1	second	delay?

Chapter	2	Skills:	Determine	the	Best	Capture
Method	and	Apply	Capture	Filters

"Approach	networking	protocols	like	you	would	human	conversations.	Think	of	how	people	talk	to
each	other,	how	they	act	when	they	want	something,	how	they	show	gratitude	when	they	get	it.	Look	for

those	types	of	themes	in	the	packets	and	network	traffic	will	become	easier	to	understand	and
communication	nuances	will	be	easier	to	remember.	The	time	investment	is	worth	it.	When	you

understand	packets,	you	understand	everything	in	networking."

Betty	DuBois
Chief	Detective	of	Network	Detectives	

and	Wireshark	University	Certified	Instructor

Quick	Reference:	Capture	Options

1.	 Interface	List—Select	one	or	more	interfaces	(multi-adapter	capture)
2.	 Capture	Filter—Displays	applied	capture	filter	(double-click	to	change,	remove	or	add	a	capture

filter)
3.	 Manage	Interfaces—Click	here	to	add	new	local/remote	interfaces
4.	 Capture	File(s)—Save	to	multiple	files,	set	a	ring	buffer,	and	set	an	auto-stop	condition	based	on

number	of	files
5.	 Display	Options—Set	auto-scroll	and	view	packets	while	capturing
6.	 Stop	Capture—Set	an	auto-stop	condition	based	on	number	of	packets,	quantity	of	data	captured,	or

elapsed	time
7.	 Name	Resolution—Enable/disable	name	resolution	for	MAC	addresses,	IP	addresses,	and	ports
8.	 Green	Wireshark	Icon—Appears	during	live	capture	(blue	icon	otherwise)

2.1.	Identify	the	Best	Capture	Location	to
Troubleshoot	Slow	Browsing	or	File	Downloads
The	first	step	in	analyzing	network	performance	problems	is	to	capture	traffic	in	the	right	spot.	Place
Wireshark	in	the	wrong	spot	and	you	may	be	spending	too	much	time	dealing	with	unrelated	traffic	or
following	a	"false	positive"	for	hours.

The	Ideal	Starting	Point
Begin	by	capturing	traffic	at	or	near	the	host	that	is	experiencing	a	performance	problem,	as	depicted	in
Figure	45.	This	allows	you	to	see	traffic	from	that	host's	perspective.	You	can	detect	the	round	trip	latency
times,	packet	loss,	error	responses,	and	other	problems	that	the	host	is	experiencing.	If	a	user	complains
about	slow	email	downloads,	you	want	to	see	the	performance	problems	from	their	perspective.	If	you
capture	somewhere	in	the	middle	of	the	network,	your	packet	capture	tool	may	be	upstream	from	the	point
where	performance	issues	are	injected	into	the	communications.

Figure	45.	You	can	see	the	concerns	from	this	host's	perspective	when	you	start	capturing	as	close	to	this	host	as	possible.

Move	if	Necessary
After	getting	a	general	idea	of	what	is	happening	from	the	complaining	host's	perspective,	you	may	have
to	move	your	packet	capture	tool	to	another	location	to	get	a	different	perspective.	For	example,	if	packet
loss	seems	to	be	the	cause	of	poor	performance,	you'll	want	to	move	Wireshark	(or	set	up	a	second
Wireshark	system)	on	the	other	side	of	the	switches	or	routers	to	determine	where	the	packets	are	being
dumped.	Most	packet	loss	occurs	at	interconnecting	devices,	so	that's	where	you	would	focus.

Start	capturing	at	the	client	system	to	get	that	client's	perspective.	Watch	for	high	round	trip	times	to	a
target,	indications	of	packet	loss,	problems	with	buffer	sizes	(zero	window	condition—as	discussed	in
Receive	Buffer	Congestion	Indications),	and	suspicious	or	unnecessary	background	traffic.	Many
times	you	won't	have	to	go	any	further	than	the	client's	perspective.

2.2.	Capture	Traffic	on	Your	Ethernet	Network
There	are	lots	of	ways	to	capture	traffic	on	your	Ethernet	network.	Knowing	your	options	will	help	ensure
you	use	the	most	efficient	method	to	capture	traffic.	You	have	three	options	for	capturing	close	to	the
complaining	host.	Options	1	through	3	are	displayed	in	Figure	46.

Figure	46.	You	have	three	basic	options	for	capturing	traffic	on	an	Ethernet	network.

Option	1:	Capture	directly	on	the	complaining	host
This	may	be	a	great	option	if	you	are	allowed	to	install	packet	capture	software	on	that	host.	You	don't
have	to	install	Wireshark.	Consider	using	a	simple	packet	capture	utility	such	as	tcpdump.

Option	2:	Span	the	host's	switch	port
If	the	switch	above	the	user	supports	port	spanning	and	you	have	rights	to	configure	that	switch,	consider
setting	up	that	switch	to	copy	all	traffic	to	or	from	the	user's	switch	port	down	your	Wireshark	port.	One
concern	to	note,	however,	is	that	switches	will	not	forward	link-layer	error	packets	so	you	may	not	see	all
the	traffic	related	to	poor	performance.

Option	3:	Set	up	a	Test	Access	Port	(TAP)
Taps[21]	are	full-duplex	devices	that	are	installed	in	the	path	between	the	host	of	interest	and	the	switch.
By	default,	taps	forward	all	network	traffic,	including	link-layer	errors.	Although	taps	can	be	expensive,
they	can	be	a	life-saver	if	you	want	to	listen	to	all	traffic	to	or	from	a	host.

Prepare	and	practice	your	capture	process	well	in	advance.	You	don't	want	to	run	around	looking	for
the	switch	port	spanning	configuration	information	while	people	are	screaming	about	network
problems.	If	you	are	going	to	use	a	tap	to	listen	to	traffic	to/from	a	server,	consider	keeping	the	tap	in
place,	always	ready	when	you	need	it.

2.3.	Capture	Traffic	on	Your	Wireless	Network
Wireshark	can	help	you	understand	how	wireless	networks	(WLANs)	work	and	also	help	you	find	the
cause	of	lousy	performance	on	your	home	or	work	network.	You	have	a	few	options	for	capturing	on	the
WLAN	side.	First,	determine	what	your	native	WLAN	adapter	can	see	while	running	Wireshark.

What	can	Your	Native	WLAN	Adapter	See?
Select	Capture	|	Interfaces	to	determine	if	your	wireless	adapter	is	listed	and	if	it	sees	traffic	through
Wireshark.	If	you	just	see	0	in	the	Packets	column	or	Packets/s	column,	but	you	know	there	is	WLAN
traffic,	your	native	adapter	probably	isn't	going	to	work	with	Wireshark.

If	you	do	see	some	packets	with	your	native	adapter,	select	that	adapter	and	click	Start.	If	your	adapter
can	see	WLAN	beacons	as	well	as	data	packets	and	you	see	802.11	headers,	your	adapter	might	work	as
a	packet	capture	interface.	However,	if	the	adapter	does	not	add	metadata,	such	as	the	signal	strength	at
the	time	of	capture,	you	are	missing	out	on	some	important	data	required	for	analysis[22].

Use	an	AirPcap	Adapter	for	Full	WLAN	Visibility
AirPcap	adapters	are	specifically	designed	to	capture	all	types	of	WLAN	traffic,	apply	WLAN
decryption	keys	(if	supplied),	and	add	metadata	about	the	captured	frames.

AirPcap	adapters	can	capture	802.11	control,	management,	and	data	frames.	In	addition,	these	adapters
run	in	monitor	mode	(also	referred	to	as	RF	monitor	or	RFMON	mode),	which	enables	the	adapter	to
capture	all	traffic	without	having	to	associate	with	a	specific	Access	Point.	This	means	the	AirPcap
adapter	can	capture	traffic	on	any	802.11	network,	not	just	the	one	to	which	the	local	host	typically
associates	itself.

AirPcap	adapters	can	be	configured	to	affix	either	a	PPI	(Per-Packet	Information)	or	RadioTap	header	to
each	WLAN	frame.	These	headers	contain	some	great	information,	such	as	the	frequency	on	which	the
frame	arrived,	the	signal	strength	and	noise	level	at	the	moment	and	location	of	capture,	and	more.	Figure
47	depicts	a	trace	file	(wlan–ipadstartstop101.pcapng)	captured	with	an	AirPcap	adapter.	The	Packet
Details	pane	displays	the	additional	information	contained	in	the	RadioTap	header.

If	you	need	to	capture	WLAN	traffic,	the	AirPcap	adapters	are	an	excellent	option.	For	more	information
on	AirPcap	adapters,	visit	www.riverbed.com.

Figure	47.	The	AirPcap	adapter	enables	you	to	see	control,	management,	and	data	frames.	In	addition,	the	adapter	prepends	a
Radiotap	or	PPI	header	with	802.11	metadata	to	the	frames.	[wlan–ipadstartstop101.pcapng]

When	troubleshooting	or	securing	WLAN	networks,	begin	as	close	as	possible	to	the	complaining/suspect
host	(just	like	you	did	when	capturing	on	a	wired	network).

Try	capturing	on	your	native	adapter	to	determine	its	capabilities.	You	need	to	see	true	802.11	headers
as	well	as	management,	data,	and	control	frames.	AirPcap	adapters	are	a	worthwhile	investment	if	you
are	going	to	be	analyzing	wireless	network	traffic.

http://www.riverbed.com/

2.4.	Identify	Active	Interfaces
If	Wireshark	can't	see	an	interface,	you	can't	capture	traffic.	If	you	have	more	than	one	interface,	you	need
to	determine	which	one	to	use.	Mastering	the	interface	options	is	required	to	be	successful	as	an	analyst.

Determine	Which	Adapter	Sees	Traffic
Select	Capture	|	Interfaces	or	click	the	Interfaces	button	on	the	main	toolbar	to	quickly	determine	which
interface	is	seeing	traffic	and	to	which	network	each	interface	is	connected.

If	you	are	using	a	dual-stack	host	(IPv4	and	IPv6),	Wireshark	shows	you	the	IPv6	address	of	each	adapter
by	default.	Click	on	the	IPv6	address	to	see	an	adapter's	IPv4	address,	if	one	exists.	For	example,	in
Figure	48	we	clicked	on	the	IPv6	address	displayed	for	the	Atheros	L1C	PCI-E	Ethernet	Controller
adapter.	Wireshark	is	now	displaying	the	IPv4	address	for	that	adapter.

Figure	48.	We	can	easily	tell	which	interface	is	able	to	capture	traffic.	Click	on	the	address	to	toggle	between	IPv4	and	IPv6
addresses	assigned	to	that	interface.

Consider	Using	Multi-Adapter	Capture
As	of	Wireshark	1.8,	you	can	capture	on	two	or	more	interfaces	at	a	time.	This	is	useful	if	you	want	to
capture	on	the	wired	and	wireless	network	simultaneously.	For	example,	if	you	are	trying	to	troubleshoot
a	WLAN	client	on	the	network,	you	can	capture	on	the	client's	WLAN	adapter	and	the	wired	network
simultaneously,	as	shown	in	Figure	49.

Figure	49.	You	can	simultaneously	capture	a	client's	traffic	as	it	travels	through	to	wireless	and	wired	networks.

The	Details	button	(not	available	with	Wireshark	for	MAC	OS	X	unfortunately)	provides	lots	of
information	about	the	local	interfaces.	This	information	is	piped	up	by	the	interface	and	may	include
details	about	the	interface	configuration	and	capabilities,	as	well	as	transmit	and	receive	statistics.

2.5.	Deal	with	TONS	of	Traffic
Inside	a	busy	enterprise,	the	traffic	can	overload	Wireshark[23]	leaving	you	with	a	corrupt	trace	file	that
makes	your	analysis	thoroughly	inaccurate.	Learn	to	deal	with	high	rates	of	traffic	to	ensure	you	can	track
down	problems	on	any	size	network.

In	Chapter	8	we	will	look	at	command-line	capture	techniques	using	Tshark	and	dumpcap.

Why	are	You	Seeing	So	Much	Traffic?
If	a	user	is	complaining	about	slow	web	browsing,	begin	capturing	traffic	and	then	ask	the	user	to	browse
to	some	web	sites.	Keep	capturing	until	your	user	has	demonstrated	the	slow	browsing	problem.	You	will
have	captured	traffic	that	will	help	you	determine	if	the	performance	problem	is	linked	to	the	client,
server,	or	path.

When	you	capture	close	to	the	client,	you	should	see	much	less	traffic	than	if	you'd	tapped	into	the	middle
of	the	enterprise.	It	is	likely	that	Wireshark	can	keep	up	with	traffic	rates	to	and	from	the	client.

If	you	are	dealing	with	a	security	issue	(perhaps	you	think	a	host	contains	malware),	you	may	want	to
capture	all	traffic	to	or	from	this	host	for	quite	a	while.	During	this	capture	process,	don't	let	a	user	access
the	keyboard	of	this	machine.	You	don't	want	to	capture	user	behavior.

You	can	get	severe	back	pains	from	sleeping	on	the	office	floor	or	quickly	fill	up	a	hard	drive	if	you	don't
set	this	up	as	an	unattended	capture	process.

This	is	the	Best	Reason	to	Use	Capture	Filters
Dealing	with	too	much	data	is	one	of	the	best	reasons	to	use	capture	filters.	By	reducing	the	number	of
packets	Wireshark	must	capture,	you	reduce	the	load	on	Wireshark	while	reducing	the	amount	of	traffic
you	must	wade	through.	Keep	in	mind,	however,	that	an	overly	restrictive	capture	filter	may	cause	you	to
miss	key	packets.	Look	at	capturing	to	file	sets	as	a	safe	option.

Capture	to	a	File	Set
Wireshark	can	capture	traffic	to	file	sets.	File	sets	are	individually	linked	files	that	can	be	examined	using
Wireshark's	File	|	File	Set	|	List	Files	feature.

Select	Capture	|	Options	and	check	the	box	next	to	the	interface	on	which	you	want	to	capture	traffic.
Enter	the	path	and	file	name	for	the	file	set	in	the	Capture	File(s)	section,	as	shown	in	Figure	50.	Check
Use	multiple	files	and	define	the	criteria	to	create	the	next	file.

In	our	example,	Wireshark	will	create	a	set	of	100	MB-sized	files	in	.pcapng	format.	We	didn't	set	a	stop
criteria	so	we'll	need	to	manually	stop	the	capture	process	at	some	point.

Figure	50.	We	set	up	Wireshark	to	capture	to	a	set	of	100	MB-sized	files.

In	the	example	shown	in	Figure	50	since	we	suspect	malware	is	running	on	a	host,	we	will	let	Wireshark
capture	the	traffic	to	and	from	this	host	for	the	next	12	hours	to	see	if	there	is	a	phone	home	process
running	in	the	background.	You	may	need	to	capture	for	longer	or	shorter	times,	depending	on	what	you
see	in	the	trace	file(s).

When	Wireshark	saves	to	these	file	sets,	the	files	will	be	named	ginny_pc	followed	by	a	file	number	and
date/time	stamp.	For	example,	if	we	captured	three	files,	they	would	be	named	as	follows:

ginny_pc_00001_20130123180713.pcapng
ginny_pc_00002_20130123184116.pcapng
ginny_pc_00003_20130123190252.pcapng	...

Open	and	Move	around	in	File	Sets
To	work	with	file	sets,	use	File	|	Open	and	select	any	of	the	files	in	your	file	set.	After	opening	the	first
file	from	this	set,	use	File	|	File	Set	|	List	Files	to	see	all	the	files	in	your	file	set.

Click	on	the	radio	button	in	front	of	each	file	to	quickly	move	from	one	file	to	another.	See	also	Use
Special	Capture	Techniques	to	Spot	Sporadic	Problems.

Consider	a	Different	Solution—Cascade	Pilot®
It	was	evident	back	in	2007	that	trace	files	were	getting	larger	and	larger	as	network	speeds	increased
and	file	sizes	expanded	to	include	multimedia	elements.	Wireshark	suddenly	became	a	cumbersome	tool
to	use	on	these	files.

In	2009,	Loris	Degioanni,	creator	of	WinPcap,	began	work	on	a	product	that	is	now	known	as	Cascade
Pilot[24].	Cascade	Pilot	handles	large	trace	files,	offers	graphing	and	reporting	capabilities	missing	in
Wireshark,	and	integrates	tightly	so	you	can	export	specific	packets	for	closer	inspection.

One	of	Cascade	Pilot's	most	welcome	features	is	the	ability	to	handle	larger	trace	files.	For	example,	in	a
recent	test,	it	took	1	minute	and	52	seconds	to	open	a	1.3	GB	file	in	Wireshark.	Each	time	we	added	a
display	filter,	column,	or	coloring	rule,	Wireshark	had	to	reload	the	file.	Wireshark	essentially	became
unusable.	In	Cascade	Pilot,	we	loaded	the	IP	conversations	view	of	the	same	file	(shown	in	Figure	51)	in
less	than	3	seconds.

Figure	51.	The	IP	Conversations	view	of	our	1.3	GB	file	loaded	in	less	than	3	seconds	in	Cascade	Pilot.

Try	to	keep	your	file	size	below	100	MB.	Larger	file	sizes	will	cause	Wireshark	to	become	sluggish
when	you	add	columns,	apply	filters,	or	build	graphs.	Wireshark	is	not	very	good	at	handling	huge
trace	files.	Cascade	Pilot®	was	created	to	work	with	the	larger	trace	files	and	to	integrate	seamlessly
with	Wireshark.	If	you	must	capture	and	work	with	very	large	trace	files	(over	100	MB),	look	into
Cascade	Pilot	as	an	analyzer	solution.

	Lab	10:	Capture	to	File	Sets
In	this	lab	you	will	get	a	chance	to	practice	capturing	to	file	sets	using	an	auto-stop	condition.

Step	1:	Click	on	the	Capture	Options	button	 	on	the	main	toolbar.

Step	2:	Click	on	the	checkbox	in	front	of	the	adapter	you	are	currently	using	to	connect	to	the	Internet.

Step	3:	In	the	Capture	File(s)	area,	click	the	Browse	button	to	navigate	to	and	select	the	directory	in
which	you	want	to	save	your	trace	files.	Enter	captureset101.pcapng	in	the	Name	area,	as	shown	below.
Click	OK.

Step	4:	Toggle	back	to	the	Capture	Options	window.	Your	directory	and	file	name	should	appear	in	the
File	section.	Select	Use	multiple	Files	and	define	the	next	file	every	1	MB	and	next	file	every	10
seconds.	Whichever	condition	is	met	first	causes	the	creation	of	the	next	file.	Enter	4	in	the	Stop	capture
after	area,	as	shown	below.

Step	5:	Click	Start.

Step	6:	Open	your	browser	and	visit	www.openoffice.org.	Browse	around	the	web	site	for	at	least	40
seconds.

Toggle	back	to	Wireshark	and	look	in	the	File	area	of	the	Status	Bar.	You	should	see	your	file	name	stem
(captureset101)	followed	by	a	file	number	(_00004	shown	below)	and	the	date	and	timestamp.

Step	7:	Select	File	|	File	Set	|	List	Files.	Wireshark	displays	all	four	files	of	your	file	set.	Click	the	radio
button	in	front	of	the	various	files	to	move	quickly	from	one	file	to	another.

Step	8:	Lab	Clean-up		Close	your	File	List	window.	Note	that	Wireshark	retains	many	of	your	capture
options.	You	will	need	to	check	the	capture	option	settings	when	you	prepare	for	the	next	capture	process.

When	you	are	dealing	with	a	lot	of	traffic,	consider	saving	to	file	sets.	Wireshark	will	load	the	files
faster	if	they	are	under	100	MB.	You	will	find	yourself	using	file	sets	more	often	as	you	need	to	capture
larger	amounts	of	traffic.

2.6.	Use	Special	Capture	Techniques	to	Spot
Sporadic	Problems
Sporadic,	roaming	problems	often	plague	analysts.	Using	a	few	key	Wireshark	functions	you	can	be	ready
to	catch	these	annoyingly	elusive	events.

If	you	have	a	sporadic	problem,	one	that	seems	to	appear	on	and	off	through	a	network,	you	will	need	to
be	a	bit	more	creative	with	your	capture	process.	In	this	case,	you	should	capture	traffic	continuously	until
the	problem	occurs	again.

Use	File	Sets	and	the	Ring	Buffer
In	this	situation,	set	up	Wireshark	to	capture	traffic	to	file	sets,	but	use	the	ring	buffer	option.	In	Figure	52,
we	defined	a	new	file	name	(roamingprob.pcapng)	and	indicated	that	we	want	to	keep	a	total	of	5	files
(ring	buffer	setting	of	5).

Figure	52.	We	are	going	to	examine	the	last	500	MB	of	traffic	leading	up	to	the	problem	point	in	time.

When	Wireshark	finishes	capturing	the	fifth	100	MB	file,	it	will	delete	the	first	100	MB	file	and	create	a
sixth	100MB	file.	Let	Wireshark	run	continuously.	The	file	set	feature	won't	fill	up	the	hard	drive	and	you
will	have	the	last	500	MB	leading	up	to	the	problem.

Stop	When	Complaints	Arise
When	the	user	complains	about	performance,	stop	the	capture	process	manually	and	look	at	the	most
recent	file	to	see	what	happened.

Wireshark	will	keep	numbering	the	files	so	you	know	how	many	100	MB	files	have	been	created	and
deleted	(if	older	than	the	last	five	files).

For	example,	we	may	see	file	names	such	as:

roamingprob_00007_20130109203453.pcapng
(created	at	8:34:53PM	on	January	9th,	2013)
roamingprob_00008_20130110023321.pcapng
(created	at	2:33:21AM	on	January	10th,	2013)
roamingprob_00009_20130110091141.pcapng
(created	at	9:11:41AM	on	January	10th,	2013)
roamingprob_00010_20130110094214.pcapng
(created	at	9:42:14AM	on	January	10th,	2013)
roamingprob_00011_20130110100107.pcapng
(created	at	10:01:07AM	on	January	10th,	2013)

This	is	a	great	way	to	let	Wireshark	automatically	capture	traffic	for	later	review.

Practice	this	skill	by	configuring	Wireshark	to	capture	to	file	sets	with	a	ring	buffer	as	you	are	going
about	your	daily	work.	As	Wireshark	runs	in	the	background,	you	are	ready	to	capture	the	traffic
leading	up	to	any	type	of	problem	that	arises.	For	example,	if	you	suddenly	notice	a	web	site	loads
slower	than	usual,	you	can	toggle	to	Wireshark	and	stop	the	capture	to	see	what	recently	happened.

	Lab	11:	Use	a	Ring	Buffer	to	Conserve	Drive	Space
In	this	lab	exercise,	we	will	set	up	a	ring	buffer	to	ensure	we	see	the	most	recent	traffic.	We	will	create	a
problem	and	manually	stop	the	capture	to	analyze	the	issue.

Step	1:	Click	on	the	Capture	Options	button	 	on	the	main	toolbar.

Step	2:	Click	on	the	checkbox	in	front	of	the	adapter	you	are	currently	using	to	connect	to	the	Internet.

Step	3:	In	the	Capture	File(s)	area,	click	the	Browse	button	to	navigate	to	and	select	the	directory	in
which	you	want	to	save	your	trace	files.	Enter	stopatproblem101.pcapng	in	the	Name	area.	Click	OK.

Step	4:	Toggle	back	to	the	Capture	Options	window.	Your	directory	and	file	name	should	appear	in	the
File	section.	Select	Use	multiple	files	and	define	the	next	file	every	10	MB	and	next	file	every	30
seconds.	Whichever	condition	is	met	first	causes	the	creation	of	the	next	file.	Select	the	Ring	Buffer
option	and	enter	3	to	define	the	maximum	number	of	files	to	keep.	Uncheck	the	Stop	capture	after	setting,
as	shown	below.

Step	5:	Click	Start.

Step	6:	Open	your	browser	and	visit	www.wireshark.org.	Spend	at	least	30	seconds	browsing	around
the	site.

Step	7:	Now	browse	to	www.chappellu.com/nothere.html.	This	should	generate	a	404	error	because	the
file	does	not	exist.

Step	8:	Quickly	toggle	back	to	Wireshark	and	click	the	Stop	Capture	button.	

Step	9:	Look	in	the	File	area	of	the	Status	Bar.	You	can	see	how	many	file	numbers	have	been	assigned	to
this	point.	When	you	look	at	the	directory	to	which	you	saved	files,	you	only	see	three	files	because	your
ring	buffer	was	set	up	to	save	only	the	last	three	files.

Step	10:	Click	the	Go	To	Last	Packet	button	and	scroll	backwards	through	the	tracefile	from	the	end
towards	the	start	to	locate	the	404	error	message	from	the	server,	as	shown	below.

In	Lab	19,	you	will	use	a	display	filter	to	quickly	locate	404	error	responses.

Step	11:	Lab	Clean-up		Note	that	Wireshark	retains	many	of	your	capture	options.	You	will	need	to	check
the	capture	option	settings	when	you	prepare	for	the	next	capture	process.

Using	a	ring	buffer	and	manual	stop	process	allows	you	to	detect	what	happened	up	to	and	at	the	time
performance	went	awry.

2.7.	Reduce	the	Amount	of	Traffic	You	have	to
Work	With
Rather	than	prepare	for	a	week	of	sifting	through	packets,	consider	reducing	the	work	load	significantly
by	capturing	at	the	proper	location	and	filtering	during	the	capture	process.

If	you	must	capture	traffic	inside	the	enterprise	or	on	a	server	that	is	very	busy,	you	may	find	that
Wireshark	cannot	keep	up	with	the	traffic	rate.

Detect	When	Wireshark	Can't	Keep	Up
Wireshark	launches	dumpcap.exe	to	capture	traffic.	Wireshark	pulls	the	traffic	from	dumpcap.	If	dumpcap
cannot	keep	up	with	the	traffic	during	a	capture	process	(most	likely	because	Wireshark	is	not	pulling	the
traffic	from	dumpcap	fast	enough),	the	phrase	"Dropped:	x"	will	appear	on	Wireshark's	Status	Bar	in	the
center	column.

Most	likely,	your	trace	file	will	contain	numerous	ACKed	Lost	Segment	and	Previous	Segment	Not
Captured	indications.	You	cannot	work	with	a	faulty	trace	file.	Your	assumptions	and	analysis	would	be
as	incomplete	as	the	data	from	which	you	worked.	Such	a	trace	file	is	unusable.

This	is	a	perfect	time	to	apply	capture	filters.[25]	Figure	53	shows	that	capture	filters	are	applied	before
the	packets	are	sent	to	the	capture	engine.	By	applying	capture	filters	at	this	point,	you	have	a	better
chance	of	avoiding	dropped	packets.

Figure	53.	Capture	filters	reduce	the	load	on	the	Capture	Engine.

Detect	when	a	Spanned	Switch	Can't	Keep	Up
Packet	drops	can	also	occur	when	you	are	spanning	ports	on	a	very	busy	switch.	Consider	what	would
happen	if	you	spanned	a	physical	switch	port	that	connects	to	a	very	busy	network.	You	connect	to	the
network	on	a	1	Gb	link	(which	is	actually	2	Gb	because	of	full-duplex	operations).	If	this	network	is	very
busy	and	you	span	several	switch	ports	down	your	lowly	1	Gb	downlink,	that	switch	is	likely	going	to
drop	some	packets.	This	situation	is	called	oversubscription.

In	this	case,	Wireshark	won't	note	Dropped:	x	in	the	Status	Bar.	Instead,	you	may	see	numerous	ACKed
Lost	Segment	and	Previous	Segment	Not	Captured	indications.	Wireshark	doesn't	indicate	that	it	has
dropped	any	packets,	because	it	hasn't—the	switch	didn't	forward	the	packets	to	Wireshark.

This	switch	span	capture	configuration	is	not	going	to	work.	You'll	need	to	change	where	and	how	you
capture	traffic.	A	full-duplex	tap	is	a	great	solution	in	this	case,	as	shown	in	Figure	54.	Intelligent	taps	can
even	offer	some	capture	filtering	capability	at	the	tap.

Figure	54.	Place	the	tap	between	the	server	and	the	switch.

You	also	might	consider	capturing	to	file	sets	with	a	maximum	file	size	of	100	MB.	Wireshark	really
doesn't	like	working	with	huge	trace	files.	We	covered	using	file	sets	in	Use	Special	Capture	Techniques
to	Spot	Sporadic	Problems.

Apply	a	Capture	Filter	in	the	Capture	Options	Window
To	apply	a	capture	filter,	select	Capture	|	Options....	Expand	the	window	to	see	the	Capture	Filter
column	(which	should	be	blank	at	this	time).	Double-click	anywhere	on	the	selected	interface	line,	as
shown	in	Figure	55.	This	launches	the	Edit	Interface	Settings	window.

Figure	55.	Double-click	the	desired	interface	line	to	open	the	Edit	Interface	Settings	window	and	apply	a	capture	filter.

Figure	56	shows	the	Edit	Interface	Settings	window,	which	is	where	you	can	set	your	capture	filter.	If	you
know	the	syntax	of	your	capture	filter,	simply	type	it	in	in	the	Capture	Filter	area.	Remember—Wireshark
uses	BPF	(Berkeley	Packet	Filtering)	syntax.	This	is	the	format	supported	by	dumpcap	for	capture	filters.

Wireshark	color	codes	the	background	as	you	type	to	alert	you	to	capture	filter	errors.	A	red	background
indicates	the	filter	cannot	be	processed.	Most	likely,	the	capture	filter	contains	a	typo	or	perhaps	you	used
display	filter	syntax.

Click	the	Capture	Filter	button	to	view	and	select	saved	capture	filters,	if	desired.	For	more	information
on	capture	filtering	techniques,	see	Capture	Traffic	based	on	Addresses	(MAC/IP).

Figure	56.	Wireshark	provides	color	coding	to	help	detect	capture	filter	problems

For	additional	information	on	capture	filters,	visit	wiki.wireshark.org/CaptureFilters.

http://wiki.wireshark.org/CaptureFilters

2.8.	Capture	Traffic	based	on	Addresses
(MAC/IP)
Capturing	traffic	to	and	from	a	particular	IP	address	(or	range	of	IP	addresses)	or	a	MAC	address	is	a	key
skill	that	you	will	use	when	focusing	on	a	particular	problem,	studying	an	application's	behavior,	or
investigating	a	potentially	breached	host.

Capture	filters	use	the	BPF	syntax	and	are	actually	applied	by	dumpcap,	which	is	the	tool	that	is	called	by
Wireshark	to	capture	the	packets.	Display	filters,	which	you	will	examine	later	in	this	book,	use	a
proprietary	Wireshark	format.	Display	filters	are	not	limited	by	the	capabilities	of	dumpcap	and	the	BPF
syntax.

Before	you	get	too	excited	with	all	the	options	for	using	capture	filters,	let	me	make	a	recommendation.
Use	capture	filters	sparingly	and	display	filters	liberally.	If	you	filter	something	out	using	capture
filters,	you	can	never	get	those	packets	back.	For	example,	if	you	applied	a	display	filter	for	traffic	to
and	from	port	80	and	found	that	the	browsing	session	targeted	a	strange	IP	address	for	the	web	server,
it	would	be	nice	to	see	the	DNS	process	that	took	place	beforehand.	Too	late.	You	filtered	those	packets
out.	If	you'd	captured	without	a	capture	filter,	you	would	be	able	to	work	with	display	filters	to	focus
on	those	port	80	packets	and	then	look	at	the	DNS	traffic.

Capture	Traffic	to	or	from	a	Specific	IP	Address
If	you	are	capturing	in	a	location	where	you	see	many	hosts	communicating,	you	might	consider	using	a
capture	filter	for	the	IP	address	of	the	hosts	whose	traffic	you	are	analyzing.	The	following	provides
examples	of	IP	address	capture	filters.

host	10.3.1.1:	Capture	traffic	to/from	10.3.1.1
host	2406:da00:ff00::6b16:f02d:	Capture	traffic	to/from	the	IPv6	address
2406:da00:ff00::6b16:f02d
not	host	10.3.1.1:	Capture	all	traffic	except	traffic	to/from	10.3.1.1
src	host	10.3.1.1:	Capture	traffic	from	10.3.1.1
dst	host	10.3.1.1:	Capture	traffic	to	10.3.1.1
host	10.3.1.1	or	host	10.3.1.2:	Capture	traffic	to/from	10.3.1.1	and	any	host	it	is	communicating	with
and	traffic	to/from	10.3.1.2	and	any	host	it	is	communicating	with
host	www.espn.com:	Capture	traffic	to/from	any	IP	address	that	resolves	to	www.espn.com	(this	will
only	work	if	the	host	name	can	be	resolved	by	Wireshark	prior	to	capture)

Capture	Traffic	to	or	from	a	Range	of	IP	Addresses
When	you	want	to	capture	traffic	to	or	from	a	group	of	addresses,	you	can	use	CIDR	(Classless
Interdomain	Routing)	format	or	use	the	mask	parameter.

net	10.3.0.0/16:	Capture	traffic	to/from	any	host	on	network	10.3.0.0
net	10.3.0.0	mask	255.255.0.0
Same	result	as	previous	filter
ip6	net	2406:da00:ff00::/64
Capture	traffic	to/from	any	host	on	network	2406:da00:ff00:0000	(IPv6)
not	dst	net	10.3.0.0/16
Capture	all	traffic	except	traffic	to	an	IP	address	starting	with	10.3
dst	net	10.3.0.0/16
Capture	traffic	to	any	IP	address	starting	with	10.3
src	net	10.3.0.0/16
Capture	traffic	from	any	IP	address	starting	with	10.3

Capture	Traffic	to	Broadcast	or	Multicast	Addresses
You	can	learn	a	lot	about	hosts	on	the	network	by	just	listening	to	broadcast	and	multicast	traffic.

ip	broadcast:	Capture	traffic	to	255.255.255.255
ip	multicast:	Capture	traffic	to	224.0.0.0	through	239.255.255.255	(also	catches	traffic	to
255.255.255.255	unless	you	add	and	not	ip	broadcast)
dst	host	ff02::1:	Capture	traffic	to	the	IPv6	multicast	address	for	all	hosts
dst	host	ff02::2:	Capture	traffic	to	the	IPv6	multicast	address	for	all	routers

If	you	are	just	interested	in	all	IP	or	IPv6	traffic,	use	the	capture	filters	ip	or	ip6,	respectively.

Refer	to	Capture	Traffic	for	a	Specific	Application	for	more	capture	filter	examples.

Capture	filters	can	be	used	during	command-line	capture	as	well.	For	more	information,	refer	to	Use
Capture	Filters	during	Command-Line	Capture.	Also	refer	to	wiki.wireshark.org/CaptureFilters.

Wireshark	includes	a	default	set	of	capture	filters.	Click	the	Edit	Capture	Filters	button	on	the	main
toolbar	to	jump	to	the	saved	capture	filters	list.	You'll	find	some	good	examples	of	common	capture
filters	used	with	Wireshark.

http://wiki.wireshark.org/CaptureFilters

Capture	Traffic	based	on	a	MAC	Address
When	you	want	to	capture	IPv4	or	IPv6	traffic	to	or	from	a	host,	create	a	capture	filter	based	on	the	host's
MAC	address.

Since	MAC	headers	are	stripped	off	and	applied	by	routers	along	a	path,	ensure	you	are	on	the	same
network	segment	as	the	target	host.

ether	host	00:08:15:00:08:15:	Capture	traffic	to	or	from	00:08:15:00:08:15
ether	src	02:0A:42:23:41:AC:	Capture	traffic	from	02:0A:42:23:41:AC
ether	dst	02:0A:42:23:41:AC:	Capture	traffic	to	02:0A:42:23:41:AC
not	ether	host	00:08:15:00:08:15:	Capture	traffic	to	or	from	any	MAC	address	except	for	traffic	to
or	from	00:08:15:00:08:15

In	Lab	13,	you	will	create	a	NotMyMAC	capture	filter	to	listen	in	on	the	traffic	to	or	from	other	hosts	on
the	network	while	not	capturing	your	own	traffic.

	Lab	12:	Capture	Only	Traffic	to	or	from	Your	IP	Address
In	this	lab	you	will	determine	your	current	IP	address	and	apply	a	capture	filter	for	that	traffic.

Step	1:	Click	the	Capture	Options	button	 	on	the	main	toolbar.

Wireshark	displays	your	IP	addresses	for	the	interfaces	listed.	You	could	also	use	either	ipconfig	or
ifconfig	to	copy	your	IP	address	and	paste	in	to	your	filter	if	desired.

Step	2:	Click	the	checkbox	to	select	the	desired	interface.	Notice	that	Wireshark	displays	your	adapter's
IP	address.	You	will	use	this	address	information	to	create	your	capture	filter.

Step	3:	In	the	capture	area,	double-click	on	the	row	that	lists	your	selected	interface.	This	launches	the
Edit	Interface	Settings	window.	In	the	capture	filter	area,	enter	host	x.x.x.x	(replacing	x.x.x.x	with	your	IP
address)	to	filter	on	your	IPv4	traffic.	If	you	are	going	to	capture	on	your	IPv6	address,	enter
host	xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx.	Click	OK.

Step	4:	Return	to	Wireshark's	Capture	Options	window.	Be	certain	that	Use	multiple	files	in	the	Capture
File(s)	area	is	unchecked	and	click	Start	to	begin	the	capture	process.

Step	5:	Now	open	your	command	prompt	and	typeping	www.chappellu.com.

Step	6:	Toggle	back	to	Wireshark	and	examine	your	trace	file.	All	the	traffic	shown	should	be	to	or	from
your	IP	address.

Step	7:	[Lab	Clean-up]	Note	that	Wireshark	retains	many	of	your	capture	options.	You	will	need	to	check
the	capture	option	settings	when	you	prepare	for	the	next	capture	process.

Consider	following	the	same	steps	to	build	a	filter	to	or	from	your	MAC	address	(create	a	"MyMAC"
filter).	In	the	next	lab,	we	will	create	a	filter	for	everyone	else's	traffic	(based	on	a	MAC	address	filter)
and	we	will	save	our	new	capture	filter.

http://www.chappellu.com/

	Lab	13:	Capture	Only	Traffic	to	or	from	Everyone	Else's	MAC
Address
In	this	lab	you	will	determine	your	current	MAC	address	and	apply	a	capture	filter	that	filters	out	your
traffic—you	are	interested	in	everyone	else's	traffic	only[26].

Step	1:	Run	either	ipconfig	or	ifconfig	at	the	command	prompt	to	determine	the	MAC	address	of	your
active	interface[27].

Step	2:	Click	on	the	Capture	Options	button	 	on	the	main	toolbar.

Step	3:	Click	the	checkbox	to	select	the	desired	interface	and	double-click	on	the	row	that	lists	your
selected	interface.

Step	4:	In	the	Capture	Filter	area	of	the	Edit	Interface	Settings	window,	enter
not	ether	host	xx.xx.xx.xx.xx.xx	using	your	Ethernet	address.

Step	5:	To	save	this	new	capture	filter,	click	the	Capture	Filter	button.	Enter	NotMyMAC	in	the	Name
area.	The	filter	string	value	should	already	be	set.	Click	the	New	button.

Step	6:	Scroll	through	the	list	of	capture	filters—your	new	NotMyMAC	filter	should	appear	at	the	end	of
the	list	as	shown	below.	Click	OK.

Step	7:	Click	OK	to	close	the	Capture	Filter	window.	Click	OK	to	close	the	Edit	Interface	Settings
window.	In	your	Capture	Options	window	you	should	see	your	new	capture	filter	listed	in	the	Capture
Options	window.	Expand	the	window	if	necessary.

We	won't	set	up	multiple	file	capture	or	auto-stop	in	this	lab	so	leave	those	options	unchecked.

Step	8:	Click	Start	to	begin	the	capture	process.	Now	browse	to	various	sites,	login	to	your	server,	or
send	email.

Step	9:	Toggle	back	to	Wireshark	and	click	the	Stop	Capture	button.	

Step	10:	Scroll	through	your	trace	files	to	examine	the	traffic	captured	during	your	communications
processes.	None	of	your	traffic	will	be	captured.

Step	11:	[Lab	Clean-up]	Note	that	Wireshark	retains	many	of	your	capture	options.	You	will	need	to
check	the	capture	option	settings	when	you	prepare	for	the	next	capture	process.

There's	no	reason	to	capture	your	own	traffic	when	you	are	analyzing	someone	else's	communications.
Running	your	NotMyMAC	filter	will	ensure	your	traffic	is	not	caught	during	the	capture	process.

2.9.	Capture	Traffic	for	a	Specific	Application
You	will	often	want	to	look	at	traffic	from	a	single	application	or	even	sets	of	applications.	Get	the
unrelated	packets	out	of	the	way	by	applying	a	capture	filter	based	on	the	TCP	or	UDP	port	number	used
by	your	target	application(s).

The	capture	filter	syntax	(Berkeley	Packet	Filtering	format)	does	not	recognize	application	names.	You
need	to	define	an	application	based	on	the	port	number	in	use.

It's	all	About	the	Port	Numbers
Here	is	a	quick	list	of	some	of	the	most	popular	application	capture	filters.	For	more	information	on
capture	filters,	refer	to	wiki.wireshark.org/CaptureFilters.

port	53:	Capture	UDP/TCP	traffic	to	or	from	port	53	(typically	DNS	traffic)
not	port	53:	Capture	all	UDP/TCP	traffic	except	traffic	to	or	from	port	53
port	80:	Capture	UDP/TCP	traffic	to	or	from	port	80	(typically	HTTP	traffic)
udp	port	67:	Capture	UDP	traffic	to	or	from	port	67	(typically	DHCP	traffic)
tcp	port	21:	Capture	TCP	traffic	to	or	from	port	21	(typically	the	FTP	command	channel)
portrange	1-80:	Capture	UDP/TCP	traffic	to	or	from	ports	from	1	through	80
tcp	portrange	1-80:	Capture	TCP	traffic	to	or	from	ports	from	1	through	80

http://wiki.wireshark.org/CaptureFilters

Combine	Port-based	Capture	Filters
When	you	want	to	capture	traffic	to	or	from	various	non-contiguous	port	numbers,	combine	them	with	a
logical	operator,	as	shown	below.

port	20	or	port	21:	Capture	all	UDP/TCP	traffic	to	or	from	port	20	or	port	21	(typically	FTP	data
and	command	ports)
host	10.3.1.1	and	port	80:	Capture	UDP/TCP	traffic	to	or	from	port	80	that	is	being	sent	to	or	from
10.3.1.1
host	10.3.1.1	and	not	port	80:	Capture	UDP/TCP	traffic	to	or	from	10.3.1.1	except	traffic	to	or	from
port	80
udp	src	port	68	and	udp	dst	port	67:	Capture	all	UDP	traffic	from	port	68	to	port	67	(typically	traffic
sent	from	a	DHCP	client	to	a	DHCP	server)
udp	src	port	67	and	udp	dst	port	68:	Capture	all	UDP	traffic	from	port	67	to	port	68	(typically	traffic
sent	from	a	DHCP	server	to	a	DHCP	client)

Try	to	avoid	capture	filters	whenever	possible.	I	cannot	stress	this	enough!	It	is	much	better	to	have	too
much	traffic	to	wade	through	than	to	find	out	you're	missing	a	piece	of	the	picture.	Once	you	capture	this
large	amount	of	traffic,	use	display	filters	(which	offer	many	more	filtering	options)	to	focus	on	specific
traffic.

If	you	need	to	make	capture	filters	that	look	for	a	specific	ASCII	string	in	a	TCP	frame,	use
Wireshark's	String-Matching	Capture	Filter	Generator	(http://www.wireshark.org/tools/string-
cf.html).	For	example,	if	you	only	want	to	capture	HTTP	GET	requests,	simply	enter	in	the	string	GET
and	set	the	TCP	offset	to	0	(where	HTTP	request	methods,	or	commands,	reside).

http://www.wireshark.org/tools/string-cf.html

2.10.	Capture	Specific	ICMP	Traffic
Internet	Control	Messaging	Protocol	(ICMP)	is	a	protocol	you	should	watch	for	when	performance	or
security	issues	plague	a	network.

The	table	below	shows	the	structure	of	numerous	ICMP	capture	filters.	In	this	case	we	must	use	an	offset
to	indicate	the	field	location	in	an	ICMP	packet.	Offset	0	is	the	ICMP	Type	field	and	offset	1	is	the
location	of	the	ICMP	Code	field.

icmp:	Capture	all	ICMP	packets.
icmp[0]=8:	Capture	all	ICMP	Type	8	(Echo	Request)	packets.
icmp[0]=17:	Capture	all	ICMP	Type	17	(Address	Mask	Request)	packets.
icmp[0]=8	or	icmp[0]=0:	Capture	all	ICMP	Type	8	(Echo	Request)	packets	or	ICMP	Type	0	(Echo
Reply)	packets.
icmp[0]=3	and	not	icmp[1]=4:	Capture	all	ICMP	Type	3	(Destination	Unreachable)	packets	except
for	ICMP	Type	3/Code	4	(Fragmentation	Needed	and	Don't	Fragment	was	Set)	packets.

Although	we	could	have	listed	not	icmp	as	a	possible	capture	filter	above,	you	likely	would	never	want	to
use	that	filter	since	ICMP	provides	so	much	information	about	network	activity	and	configurations.

	Lab	14:	Create,	Save	and	Apply	a	DNS	Capture	Filter
In	this	exercise	you	will	use	several	skills	learned	in	this	chapter.	You	will	configure	Wireshark	to
capture	only	DNS	traffic	and	save	that	traffic	to	a	file	called	mydns101.pcapng.

Step	1:	Click	the	Capture	Options	button	 	on	the	main	toolbar.

Step	2:	Click	the	checkbox	in	front	of	the	adapter	you	are	currently	using	to	connect	to	the	Internet.

Step	3:	In	the	capture	area,	double-click	on	the	row	that	lists	your	selected	interface.	This	launches	the
Edit	Interface	Settings	window.	In	the	Capture	Filter	area,	enter	port	53,	as	shown	below.	The
background	turns	from	white	to	red	to	green	as	you	type	in	the	filter.

Step	4:	To	save	this	new	capture	filter,	click	the	Capture	Filter	button.	Enter	DNS	in	the	Name	area.	The
filter	string	value	should	already	be	set.	Click	the	New	button.

Step	5:	Scroll	to	the	end	of	capture	filters	list.	Your	new	DNS	filter	should	appear	at	the	end	of	the	list.
Click	OK.	Click	OK	on	the	Edit	Interface	Settings	window.

Step	6:	In	the	Capture	File(s)	area	of	the	Capture	Options	window,	click	the	Browse	button	to	navigate	to
and	select	the	directory	in	which	you	want	to	save	your	trace	files.	Enter	mydns101.pcapng	in	the	Name
area.	Click	OK.

Step	7:	Toggle	back	to	the	Capture	Options	window.	Your	directory	and	file	name	should	appear	in	the
File	section.	Select	Use	multiple	Files	and	define	the	next	file	every	1	MB	and	next	file	every
10	seconds.	Whichever	condition	is	met	first	causes	the	creation	of	the	next	file.	Do	not	set	a	Ring	Buffer
value	or	auto-stop	condition.	You	will	manually	stop	the	capture	process.

Step	8:	Click	Start	to	begin	the	capture	process.

Start	browsing	to	5	different	sites	on	the	Internet.	For	example,	you	could	visit	two	news	sites,	a	bank
site,	Amazon	and	www.wireshark.org.	Try	to	visit	sites	that	you	have	not	browsed	to	recently	to	ensure
DNS	information	is	not	loaded	from	your	cache.

Step	9:	Toggle	back	to	Wireshark	and	click	the	Stop	Capture	button.	

Step	10:	Scroll	through	your	trace	file(s)	to	examine	the	DNS	traffic	generated	during	your	browsing
process.	You	may	be	surprised	to	see	how	many	DNS	queries	are	generated	when	you	browse	these	sites.

Step	11:	[Lab	Clean-up]	Note	that	Wireshark	retains	many	of	your	capture	options.	You	will	need	to

check	the	capture	option	settings	when	you	prepare	for	the	next	capture	process.

Consider	saving	any	capture	filter	that	you	might	use	more	than	once.	This	will	save	you	time	if	you	need
to	repeatedly	use	a	complex	capture	filter.

Chapter	2	Challenge
This	challenge	requires	access	to	the	Internet.	You	will	capture	traffic	to	a	web	site	and	analyze	your
findings.	The	answer	key	is	located	in	Appendix	A.

First,	configure	Wireshark	to	capture	only	traffic	to	and	from	your	MAC	address	and	port	80,	and	save	the
traffic	to	a	file	named	mybrowse.pcapng.	Then	ping	and	browse	to	www.chappellU.com.	Stop	the	capture
and	examine	the	trace	file	contents.

Question	2-1.
Did	you	capture	any	ICMP	traffic?

Question	2-2.
What	protocols	are	listed	for	your	browsing	session	to	www.chappellU.com?

Now	configure	Wireshark	to	capture	all	your	ICMP	traffic,	and	save	your	traffic	to	a	file	called
myicmp.pcapng.	Again,	ping	and	browse	to	www.chappellU.com.	Stop	the	capture	and	examine	the	trace
file	contents.

Question	2-3.
How	many	ICMP	packets	did	you	capture?

Question	2-4.
What	ICMP	Type	and	Code	numbers	are	listed	in	your	trace	file?

Chapter	3	Skills:	Apply	Display	Filters	to	Focus
on	Specific	Traffic

"Wireshark	is	an	extraordinary	tool	for	network	analysis	and	discovery.	It's	obviously	critical	for
debugging	low-level	network	problems,	but	I	find	it's	often	the	best	way	to	debug	higher	level

applications	too.	Web	traffic	is	one	such	example.	Sure,	I	could	read	the	web	server	logs,	but	those
often	omit	critical	details.	Network	traffic,	on	the	other	hand,	doesn't	lie.	It	shows	me	exactly	what	is

going	on.
Wireshark	may	appear	complex	and	intimidating	when	you	first	start	it	up,	but	with	a	little	guidance

and	practice	you'll	find	that	it's	easier	than	you	think."

Gordon	"Fyodor"	Lyon
Founder	of	the	Open	Source	Nmap	Security	Scanner	Project

Quick	Reference:	Display	Filter	Area

1.	 View,	edit	and	create	display	filters	(main	toolbar)
2.	 Display	Filters	button	(another	way	to	view,	edit	and	create	display	filters)
3.	 Display	Filter	Area	(includes	auto-complete	and	error	detection)
4.	 Last	used	display	filter	drop	down	list
5.	 Expressions	to	walk	you	through	creating	display	filters
6.	 Clears	the	display	filter	area	so	no	display	filter	is	applied	to	the	trace	file
7.	 Applies	the	currently	shown	display	filter	during	a	live	capture	or	to	an	opened	trace	file
8.	 Saves	the	display	filter	as	a	Filter	Expression	button
9.	 Filter	Expression	Button	area	(blank	until	new	buttons	are	created)

3.1.	Use	Proper	Display	Filter	Syntax
Becoming	a	master	of	display	filters	is	absolutely	essential	to	the	network	analyst.	This	is	the	skill	you
will	use	to	find	the	needle	in	the	haystack.	Learn	to	build,	edit,	and	save	key	display	filters	to	save
yourself	many	hours	of	frustration	wading	through	"packet	muck."

Whereas	capture	filters	use	the	BPF	syntax,	display	filters	use	a	Wireshark	proprietary	format.	Except	for
a	few	instances,	Wireshark	capture	filters	and	display	filters	look	very	different.

The	Syntax	of	the	Simplest	Display	Filters
The	simplest	display	filters	are	based	on	a	protocol,	application,	field	name,	or	characteristic.	Display
filters	are	case	sensitive.	Most	of	these	simple	display	filters	use	lower	case[28]	characters.

Protocol	Filters

arp:	Displays	all	ARP	traffic	including	gratuitous	ARPs,	ARP	requests,	and	ARP	replies
ip:	Displays	all	IPv4	traffic	including	packets	that	have	IPv4	headers	embedded	in	them	(such	as
ICMP	destination	unreachable	packets	that	return	the	incoming	IPv4	header	after	the	ICMP	header)
ipv6:	Displays	all	IPv6	traffic	including	IPv4	packets	that	have	IPv6	headers	embedded	in	them,
such	as	6to4,	Teredo,	and	ISATAP	traffic
tcp:	Displays	all	TCP-based	communications

Application	Filters

bootp:	Displays	all	DHCP	traffic	(which	is	based	on	BOOTP).	See	Determine	Why	Your	dhcp
Display	Filter	Doesn't	Work.
dns:	Displays	all	DNS	traffic	including	TCP-based	zone	transfers	and	the	standard	UDP-based	DNS
requests	and	responses
tftp:	Displays	all	TFTP	(Trivial	File	Transfer	Protocol)	traffic
http[29]:	Displays	all	HTTP	commands,	responses	and	data	transfer	packets,	but	does	not	display	the
TCP	handshake	packets,	TCP	ACK	packets	or	TCP	connection	teardown	packets
icmp:	Displays	all	ICMP	traffic

Field	Existence	Filters

bootp.option.hostname:	Displays	all	DHCP	traffic	that	contains	a	host	name	(DHCP	is	based	on
BOOTP)
http.host:	Displays	all	HTTP	packets	that	have	the	HTTP	host	name	field.	This	packet	is	sent	by	the
clients	when	they	send	a	request	to	a	web	server
ftp.request.command:	Displays	all	FTP	traffic	that	contains	a	command,	such	as	the	USER,	PASS,	or
RETR	commands

Characteristic	Filters

tcp.analysis.flags:	Displays	all	packets	that	have	any	of	the	TCP	analysis	flags	associated	with	them
—this	includes	indications	of	packet	loss,	retransmissions,	or	zero	window	conditions
tcp.analysis.zero_window:	Displays	packets	that	are	flagged	to	indicate	the	sender	has	run	out	of
receive	buffer	space

The	most	common	mistake	made	when	entering	a	display	filter	is	using	capture	filter	syntax.	Capture
filters	use	the	BPF	format	whereas	display	filters	use	a	proprietary	format.	There	are	a	few	times	when
the	same	filter	works	as	both	a	capture	and	display	filter.	For	example,	ip	and	icmp	can	be	used	both
as	capture	filters	and	display	filters.

In	Figure	57,	we	filtered	on	the	DNS	traffic	in	a	web	browsing	session.	This	is	a	great	filter	when	you
want	to	know	the	interdependencies	between	web	sites.	Using	this	filter,	we	can	see	that	browsing	to
www.wireshark.org	causes	a	storm	of	DNS	queries	to	resolve	the	IP	addresses	associated	with	the	links
on	the	page.

Figure	57.	We	filtered	on	all	the	DNS	traffic	to	see	what	host	names	were	resolved.	[http–browse101.pcapng]

Use	the	Display	Filter	Error	Detection	Mechanism
Remember	that	display	filters	are	case	sensitive.	If	you	type	DNS	instead	of	dns,	Wireshark	will	show	a
red	background	in	the	display	filter	area	to	indicate	this	filter	will	not	work.	A	yellow	background	is	a
warning	that	your	filter	may	not	work	as	desired.	A	green	background	indicates	your	filter	is	properly
formed,	but	be	careful.	Wireshark	does	not	do	a	logic	test.

We	will	look	into	display	filter	problems	in	Determine	Why	Your	dhcp	Display	Filter	Doesn't	Work	and
Why	didn't	my	ip.addr	!=	filter	work?.

Learn	the	Field	Names
Many	of	the	display	filters	you	will	apply	are	based	on	field	names	(such	as	http.host).	To	learn	a	field
name,	select	the	field	in	the	Packet	Display	list	and	look	at	the	Status	Bar,	as	shown	in	Figure	58.	In	this
example,	we	clicked	on	frame	10	in	the	Packet	List	pane	and	then	expanded	the	HTTP	header	in	the
Packet	Details	pane.	When	we	clicked	on	the	Request	Method	line	in	the	HTTP	section	of	the	packet,	the
Status	Bar	indicated	this	field	is	called	http.request.method.

Figure	58.	Click	on	a	field	and	look	at	the	Status	Bar	to	learn	the	field	name.	You	may	need	to	expand	this	column	to	see	the	entire
field	name.	[http–browse101.pcapng]

We	typed	http.request.method	in	the	display	filter	area	to	display	all	packets	that	contain	this	field[30].

We	applied	this	filter	in	Figure	59.	Notice	that	the	Status	Bar	indicates	that	this	trace	file,	http-
browse101.pcapng,	contains	2011	packets	and	only	101	packets	match	our	filter.

This	is	a	great	filter	to	determine	what	elements	are	requested	by	an	HTTP	client.	Web	servers	do	not
send	HTTP	request	methods,	they	send	HTTP	response	codes.	In	Lab	19	you	will	build	a	filter	for	the
HTTP	404	response	code.

Figure	59.	Look	at	the	Status	Bar	to	determine	how	many	packets	matched	your	filter.	You	may	need	to	expand	the	Packets	section	of
the	Status	Bar	to	see	the	Displayed	information.	[http–browse101.pcapng]

Use	Auto-Complete	to	Build	Display	Filters
As	you	type	http.request.method	in	the	filter	area,	Wireshark	opens	a	window	to	"walk	you	through"	the
filter	options.	When	you	type	http.	(including	the	dot),	you	see	a	list	of	all	possible	display	filters	that
begin	with	this	string.	Continue	typing	http.request.	and	you	will	see	filters	that	begin	with	this	phrase,	as
shown	in	Figure	60.

Figure	60.	The	auto-complete	feature	can	help	you	build	your	display	filter.	[http–browse101.pcapng]

You	can	use	this	auto-complete	feature	to	discover	available	display	filters.	For	example,	if	you	type	tcp.
(again	including	the	dot),	Wireshark	lists	all	TCP	filters	available.	If	you	type	tcp.analysis.,	Wireshark
lists	all	of	the	TCP	analysis	filters	dealing	with	TCP	problems	and	performance,	as	shown	in	Figure	61.
You	can	click	on	any	listed	filter	to	use	it	in	the	display	filter	area.

	
Figure	61.	Type	tcp.analysis.	to	determine	what	TCP	analysis	flag	filters	are	available.	[http–browse101.pcapng]

Display	Filter	Comparison	Operators
You	can	expand	your	filter	to	look	for	a	particular	value	in	a	field.	Wireshark	supports	numerous
comparison	operators	for	this	purpose.	The	following	lists	Wireshark's	seven	comparison	operators.

1.	 ==	or	eq
Example:	ip.src	==	10.2.2.2
Display	all	IPv4	traffic	from	10.2.2.2

2.	 !=	or	ne
Example:	tcp.srcport	!=	80
Display	all	TCP	traffic	from	any	port	except	port	80[31]

3.	 >		or	gt
Example:	frame.time_relative	>	1
Display	packets	that	arrived	more	than	1	second	after	the	previous	packet	in	the	trace	file

4.	 <		or	lt
Example:	tcp.window_size	<	1460
Display	when	the	TCP	receive	window	size	is	less	than	1460	bytes

5.	 >=	or	ge
Example:	dns.count.answers	>=	10
Display	DNS	response	packets	that	contain	at	least	10	answers

6.	 <=	or	lt
Example:	ip.ttl	<	10
Display	any	packets	that	have	less	than	10	in	the	IP	Time	to	Live	field

7.	 contains
Example:	http	contains	"GET"
Display	all	the	HTTP	client	GET	requests	sent	to	HTTP	servers

Use	comparison	operators	when	filtering	for	TCP-based	applications.	For	example,	if	you	want	to	see
your	HTTP	traffic	that	runs	over	port	80,	use	tcp.port==80.

You	do	not	need	a	space	on	either	side	of	an	operator.	The	filter	ip.src==10.2.2.2	works	the	same	as
ip.src	==	10.2.2.2.

Use	Expressions	to	Build	Display	Filters
If	you	absolutely	have	no	idea	how	to	filter	on	something,	click	the	Expression	button	on	the	display	filter
toolbar.		In	the	Filter	Expression	window,	you	can	type	the	name	of	the	application	or	protocol	in	which
you	are	interested	to	jump	to	that	point	in	the	Field	Name	list.	In	Figure	62,	we	typed	in	"SMB"	and
expanded	SMB	to	view	the	available	fields.

The	Relation	option	can	be	used	to	either	create	a	field	existence	filter	(field	is	present)	or	to	add	a
comparison	operator.	On	the	right	side	of	the	Filter	Expression	window,	you	may	find	predefined	values
for	the	field	you	select.	Unfortunately,	not	all	fields	are	broken	out	as	thoroughly	as	the	smb.nt_status
field.

We	selected	smb.nt_status	as	the	field,	!=	as	the	relation	and	STATUS_SUCCESS	as	the	predefined	value.
Wireshark	displays	the	value	0x0	which	is	the	value	seen	in	the	NT	Status	field	in	responses	indicating
success.	Since	we	selected	the	!=	operator,	we	are	looking	for	responses	that	are	not	successful.	When	we
clicked	OK,	Wireshark	placed	smb.nt_status	!=	0x0	in	the	display	filter	area.	You	must	click	the	Apply
button	to	place	the	place	the	filter	on	the	traffic.

Figure	62.	We	are	using	Expressions	to	create	a	filter	for	SMB	error	responses	(SMB	NT	status	values	other	than	0x0,
STATUS_SUCCESS).	[smb-join101.pcapng]

	Lab	15:	Use	Auto-Complete	to	Find	Traffic	to	a	Specific	HTTP
Server
In	this	lab	we	use	Wireshark's	auto-complete	feature	to	filter	on	specific	HTTP	communications.
Ultimately,	we	are	interested	in	client	requests	to	a	particular	server.	This	trace	file,	http–
sfgate101.pcapng,	was	captured	as	someone	browsed	a	web	site	and	then	filled	in	a	feedback	form	on
that	site	asking	about	iPad	support.

Step	1:	Open	http-sfgate101.pcapng.	Scroll	through	the	trace	file	to	get	a	feel	for	the	traffic.	You	should
see	lots	of	DNS	and	HTTP	traffic	in	this	trace	file.	The	target	site,	SF	Gate,	is	an	online	paper	focused	on
events	in	San	Francisco,	California.	The	online	paper	is	owned	by	the	Hearst	Corporation—you	will	see
numerous	references	to	"Hearst"	in	the	trace	file[32].

Step	2:	We	will	use	the	auto-complete	feature	to	begin	this	display	filter.	In	the	display	filter	area,	type
http	and	click	Apply.	Look	at	the	Status	Bar—it	should	indicate	that	5,291	packets	matched	your	filter	if
the	TCP	Allow	subdissector	to	reassemble	TCP	streams	preference	setting	is	disabled	(refer	to	Lab	6).
Your	filter	will	display	950	packets	if	this	TCP	preference	is	enabled.

Step	3:	Return	to	your	display	filter	and	add	a	"."	(dot)	after	http.	A	drop-down	menu	appears	listing	all
the	filters	available	that	begin	with	the	http.pattern.

Step	4:	Let's	use	this	list	to	find	out	what	HTTP	hosts	were	accessed	in	this	trace	file.	Scroll	down	the
list	to	find	and	double-click	http.host.	Click	Apply.	The	Status	Bar	should	indicate	that	464	packets
matched	your	filter.	Each	of	those	packets	contains	an	HTTP	Host	field.

Step	5:	You	certainly	do	not	want	to	scroll	through	464	packets	to	look	into	the	HTTP	Host	field	of	each
packet.	Let's	add	a	column	for	this	field	so	we	can	easily	see	which	hosts	were	contacted.

This	Host	column	may	already	exist	since	you	created	this	column	in	Lab	4.	If	your	Host	column	is

hidden,	right-click	on	any	column	heading,	select	Displayed	Columns	and	click	on	the	hidden	Host
(http.host)	column	entry.

If	your	Host	column	was	not	saved,	click	on	any	packet	displayed,	expand	the	Hypertext	Transfer
Protocol	section	in	the	Packet	Details	pane	(use	right-click	and	select	Expand	Subtrees	to	fully	expand
the	HTTP	section	of	the	packet).

Right-click	on	the	Host	field	and	select	Apply	as	Column.

Step	6:	Scroll	through	the	trace	file	to	see	the	numerous	hosts	that	the	client	requested	files	from	during
this	web	browsing	session.	Consider	using	this	Host	column	when	you	are	analyzing	web	browsing
sessions.

Now	let's	find	out	what	the	client	sent	to	a	particular	server.	As	mentioned	earlier	in	this	lab,	SF	Gate	is
owned	by	the	Hearst	Corporation.

Type	in	the	filter	area	to	expand	your	display	filter	to	http.host	contains	"hearst".

Only	10	packets	should	match	your	filter	now.

Step	7:	It's	time	to	look	specifically	for	a	POST	command.

First,	examine	the	HTTP	section	of	any	packet	in	the	Packet	Details	pane.	Make	sure	the	HTTP	section	is
fully	expanded.	Click	on	the	Request	Method	field	in	one	of	these	HTTP	packets	(just	a	few	lines	above

the	Host	field).	Notice	the	name	of	the	field	in	the	Status	Bar	area—http.request.method.	We	are	looking
for	a	POST	request	method	in	this	field.	We	know	the	field	name	and	now	we	know	the	value	we	want	to
find.

In	the	display	filter	area,	replace	your	current	filter	with	http.request.method=="POST"	and	click
Apply[33].

Twelve	packets	should	match	your	new	filter.

Step	8:	Scroll	through	the	12	packets	to	look	for	a	reference	to	extras.sfgate.com	in	your	Host	column.
That's	the	server	on	which	the	user	posted	the	message	about	iPad	support.

You	should	be	looking	at	frame	10,022.	Look	through	the	Packet	Bytes	pane	to	read	the	message	that	was
posted.	You	should	see	the	name	of	the	submitter	too—Scooter.	You	could	also	see	this	information	at	the
end	of	the	HTTP	section	in	the	Packet	Details	pane	(see	the	[truncated]	section).

Step	9:	[Lab	Clean-up]	Right-click	on	your	new	Host	column	and	select	Hide	Column.	If	you	want	to	use
this	column	again	later,	you	can	right-click	on	any	column	heading	and	select	your	Host	column	from	the
Display	Columns	list.

Click	the	Clear	button	to	remove	your	display	filter.

Practice	with	Wireshark's	display	filters	to	extract	just	the	traffic	of	interest.	Keep	reading	through	this
chapter	to	learn	various	tips	and	tricks	for	display	filtering.

3.2.	Edit	and	Use	the	Default	Display	Filters
You	don't	need	to	start	from	scratch.	Wireshark	includes	15	default	display	filters	that	you	can	use	as	a
reference	to	make	new	display	filters.	Add	to	these	default	display	filters	to	create	a	more	efficient
analysis	system.	You	can	either	click	the	Filter	button	(to	the	left	of	the	display	filter	area)	or	click	on	the
Display	Filter	button	(on	the	main	toolbar)	to	open	your	display	filters	window.	Both	options	are	circled
in	Figure	63.

Figure	63.	The	Filter	label	is	actually	a	button—click	on	it	to	create,	view,	edit,	or	use	saved	display	filters.	[smb-join101.pcapng]

Figure	64	shows	the	default	display	filter	list.	These	filters	can	be	applied	by	simply	selecting	one	of	the
listed	display	filters	and	clicking	OK.

Figure	64.	You	can	streamline	the	default	filter	set	by	removing	display	filters	you	won't	use.

Be	careful	before	using	a	default	display	filter.	The	Ethernet	and	IP	host	filters	have	values	that	likely	do
not	match	your	network.	You	must	edit	these	filters	or	use	these	filters	as	a	"seed"	to	create	your	own	set
of	Ethernet	or	IP	address	filters.		You	will	use	this	technique	in	Lab	16.

To	quickly	apply	more	complex	filters	to	your	traffic,	you	can	easily	add	to	this	list	of	saved	display
filters.

Display	filters	are	saved	in	a	file	called	dfilters.	It	is	just	a	text	file	and	you	can	use	any	text	editor	to
edit	the	file	(to	add	filters,	delete	filters,	or	rearrange	filters	for	example).	To	find	out	where	your
dfilters	file	is,	first	look	at	the	name	of	the	profile	in	which	you	are	working.	The	current	profile	name

is	shown	on	the	right	side	of	the	Status	Bar.	If	this	area	indicates	you	are	in	your	"Default"	profile,
select	Help	|	About	Wireshark	|	Folders	and	double-click	the	Personal	Configuration	folder
hyperlink.	The	dfilters	file	is	in	this	directory.
If	you	are	using	a	different	profile,	follow	the	same	steps	to	open	your	Personal	Configuration	folder,
but	look	for	a	profiles	directory.	There	will	be	a	subdirectory	under	profiles	that	is	named	for	each
available	profile.	Look	inside	the	appropriate	profile	directory	to	find	the	dfilters	file.

	Lab	16:	Use	a	Default	Filter	as	a	"Seed"	for	a	New	Filter
You	can	use	the	default	display	filters	as	a	template	to	create	and	save	new	custom	display	filters.	This
method	helps	you	remember	the	display	filter	syntax	and	ensures	that	the	syntax	is	correct.	We	will	create
a	display	filter	for	all	traffic	to	or	from	your	IP	address.

Step	1:	Use	the	command-line	tools	ipconfig	or	ifconfig	to	obtain	your	IP	address.

Step	2:	Click	the	Filter	button	(to	the	left	of	the	display	filter	area)	to	open	the	Display	Filter	window.

Step	3:	Select	the	IP	address	192.168.0.1	default	display	filter	and	then	click	the	New	button.	This
creates	a	new	copy	of	that	default	display	filter	and	places	it	at	the	bottom	of	the	display	filter	list.	If	you
don't	click	the	New	button,	you	will	be	editing	the	highlighted	default	filter.

Step	4:	Scroll	down	to	the	bottom	of	the	filter	list	and	select	this	new	copy	of	the	IP	address	192.168.0.1
filter.	Change	the	filter	name	to	"My	IP	Address"	and	replace	192.168.0.1	with	your	IP	address	in	the
Filter	string	area.	We	used	the	IP	address	10.1.0.1	in	our	example	below.

Step	5:	Click	OK	to	save	your	new	display	filter	and	close	the	Display	Filter	window.	You	now	should
see	your	new	filter	at	the	end	of	the	display	filter	list.	Wireshark	automatically	places	your	new	filter	in
the	display	filter	area.	If	you	don't	want	to	use	this	filter	right	now,	click	the	Clear	button.

Spend	some	time	creating	a	set	of	filters	based	on	your	Wireshark	system's	IP	address	and	MAC	address
(an	Ethernet	address	filter).	You	might	want	to	delete	default	filters	that	you	do	not	need,	for	example,	if
you	plan	to	type	the	display	filter	for	TCP	only	traffic	(tcp),	you	can	delete	this	filter.	If	you	never	plan	on
using	one	of	the	display	filters	(IPX	only,	perhaps),	delete	it.	Keep	your	filter	list	as	clean	as	possible.

3.3.	Filter	Properly	on	HTTP	Traffic
Being	able	to	properly	filter	on	browsing	sessions	is	important	when	you	are	troubleshooting	your	own
web	browsing	session	or	helping	determine	why	the	company	web	site	loads	slowly.	Don't	make	the	most
common	mistake	of	all—using	an	application	name	in	your	filter.

There	are	two	methods	used	to	filter	on	HTTP	traffic.

http
tcp.port==xx	(where	xx	denotes	the	HTTP	port	in	use)

The	second	filter	method	is	more	effective.	Let's	examine	why	by	comparing	the	use	of	each	filter	on	a
trace	file	of	a	web	browsing	session.

Test	an	Application	Filter	Based	on	a	TCP	Port	Number
First	let's	open	http-wiresharkdownload101.pcapng.	This	trace	file	contains	a	connection	to
www.wireshark.org	and	a	request	to	download	a	copy	of	Wireshark.	We	applied	the	tcp.port==80	display
filter	and	find	that,	indeed,	all	of	the	packets	match	our	filter,	as	shown	in	Figure	65.	That's	good	because
that's	all	we	have	in	the	trace	file.

Figure	65.	Our	port	number-based	filter	displays	all	the	packets	in	this	wireshark.org	browsing	session.	[http–
wiresharkdownload101.pcapng]

Look	closely	at	the	Protocol	column	of	packet	20	in	Figure	65	(also	shown	below).

Notice	that	Wireshark	indicates	this	is	a	TCP	packet,	not	an	HTTP	packet.	Wireshark	doesn't	see	any
HTTP	commands	or	responses	in	the	packet	so	the	HTTP	dissector	wasn't	applied	to	the	packet.	It's	just	a
TCP	packet	(TCP	ACKs,	FINs,	RSTs,	and	the	three-way	TCP	handshake	are	simply	listed	as	TCP).

If	you	want	to	see	the	TCP	connection	establishment,	maintenance	and	teardown	packets,	this	is	the	filter
to	use	(and	you	always	want	to	see	those	TCP	packets,	by	the	way).

Be	Cautious	Using	a	TCP-based	Application	Name	Filter
Now	let's	see	what	happened	when	we	placed	the	http	filter	on	the	traffic.	In	Figure	66,	you	can	see	that
Wireshark	is	displaying	13,353	packets.	Those	are	the	packets	that	contain	HTTP	in	the	Protocol	column.

Note:	If	you	see	only	12	frames,	your	TCP	preference	is	set	to	reassemble	TCP	streams.	Review	Lab	6	to
properly	configure	Wireshark	for	this	lab.

Figure	66.	The	http	ilter	does	not	show	the	TCP	handshake,	ACKs,	or	connection	teardown	process.	[http–
wiresharkdownload101.pcapng]

This	is	an	incomplete	picture	of	the	web	browsing	session	and	we	wouldn't	be	able	to	detect	TCP	errors
using	this	http	filter.	It	is	always	better	to	use	a	port	number	filter	on	applications	that	use	TCP.

Unfortunately,	Wireshark's	default	filter	for	HTTP	traffic	is	simply	http.	Consider	editing	this	default
filter	to	look	for	HTTP	traffic	based	on	a	port	number.

	Lab	17:	Filter	on	HTTP	Traffic	the	Right	Way
This	is	a	quick	lab.	We	will	just	compare	the	results	from	applying	two	different	display	filters	to	the
traffic.	We	will	use	http	and	then	we	will	replace	it	with	the	proper	filter	for	this	web	browsing	traffic.

Step	1:	Open	http-disney101.pcapng.	If	you	still	have	a	filter	applied	from	following	along	with	the
earlier	section,	simply	click	the	Clear	button	to	remove	it.

Step	2:	Apply	an	http	filter.	How	many	frames	matched	your	filter?	You	should	see	4,093	frames.	If	205
frames	are	displayed,	your	TCP	preference	is	set	to	reassemble	TCP	streams.	Follow	the	instructions	in
Lab	6	to	disable	this	TCP	preference	setting.

Step	3:	Replace	your	filter	with	tcp.port==80	and	click	Apply.	How	many	packets	matched	your	filter
now?	(5,917	packets?)	That's	much	better—you	are	seeing	the	full	picture	now.

Scroll	through	the	trace	file	with	this	new	filter	in	place.	Notice	the	Protocol	column	indicates	that	many
of	the	packets	were	TCP,	not	HTTP.	Wireshark	classifies	all	the	TCP	handshake	packets	and	TCP	ACK
packets	as	simply	"TCP."	We	want	to	see	these	packets	because	we	want	to	analyze	the	entire	web
browsing	session,	including	the	connection	establishment	process	and	acknowledgments.

Step	4:	[Lab	Clean-up]	Click	the	Clear	button	to	remove	your	display	filter	before	continuing.

Always	try	to	build	application	display	filters	based	on	port	numbers.	Although	Wireshark's	display
filtering	mechanism	understands	various	application	names,	you	won't	get	a	complete	picture	if	you	use
application	names	in	your	filters.

3.4.	Determine	Why	Your	dhcp	Display	Filter
Doesn't	Work
This	catches	everyone	who	doesn't	have	grey	hair.	We	are	so	accustomed	to	talking	about	DHCP	on	an
IPv4	network	without	acknowledging	that	DHCP	is	based	on	BOOTP.	You	only	have	to	learn	this
frustrating	rule	once,	thank	goodness.

If	you	type	just	dhcp	as	your	display	filter,	the	display	filter	area	turns	red	indicating	a	syntax	problem,	as
shown	in	Figure	67.	(Color	images	are	only	available	in	eBook	format.)		

Figure	67.	Since	DHCPv4	is	based	on	BOOTP,	you	must	use	bootp	as	your	filter—dhcp	won't	work.	[dhcp–
serverdiscovery101.pcapng]

Although	the	Protocol	column	indicates	the	packets	are	DHCP,	this	filter	will	not	work	because	DHCP	is
based	on	BOOTP	(Bootstrap	Protocol).

The	correct	display	filter	syntax	is	bootp.

If	you	want	to	display	DHCPv6	traffic,	however,	you	can	use	dhcpv6	(DHCPv6	is	not	based	on	BOOTP).

3.5.	Apply	Display	Filters	based	on	an	IP
Address,	Range	of	Addresses,	or	Subnet
Instead	of	applying	a	capture	filter	(and	possibly	missing	related	traffic	because	it	was	tossed	aside
during	the	capture	process),	use	display	filters	to	focus	on	someone's	traffic.	These	IP	address	display
filters	are	probably	the	most	widely	used	filters.	There	are	many	options	available	when	you	want	to	see
traffic	to	or	from	a	specific	IP	address,	range	of	addresses,	or	subnet.

Filter	on	Traffic	to	or	from	a	Single	IP	Address	or	Host
We	will	use	the	field	names	ip.src,	ip.dst,	ip.host,	and	ip.addr	for	IPv4	traffic	and	ipv6.src,	ipv6.dst,
ipv6.host,	and	ipv6.addr	for	IPv6	traffic.	Note	that	when	you	click	on	an	IP	address	in	the	Packet	Details
pane,	it	will	be	called	ip.src,	ip.dst,	ipv6.src,	or	ipv6.dst.	The	field	names	ip.host	and	ipv6.host	and
ip.addr	and	ipv6.addr	do	not	exist	in	packets.

The	ip.host	and	ipv6	host	filters	looks	for	any	IPv4	or	IPv6	addresses	that	resolve	to	a	specific	host	name
in	either	the	IPv4/IPv6	source	address	field	or	IPv4/IPv6	destination	address	field.	The	ip.addr==
[address]	and	ipv6.addr==[address]	filters	looks	for	specific	IPv4/IPv6	addresses	in	either	the	IPv4/IPv6
source	address	field	or	IPv4/IPv6	destination	address	field.

Example:	ip.addr==10.3.1.1
Display	frames	that	have	10.3.1.1	in	the	IP	source	address	field	or	the	IP	destination	address	field
Example:	!ip.addr==10.3.1.1
Display	all	frames	except	frames	that	have	10.3.1.1	in	the	IP	source	address	field	or	10.3.1.1	in	the
IP	destination	address	field
Example:	ipv6.addr==2406:da00:ff00::6b16:f02d
Display	all	frames	to	or	from	2406:da00:ff00::6b16:f02d
Example:	ip.src==10.3.1.1
Display	traffic	from	10.3.1.1
Example:	ip.dst==10.3.1.1
Display	traffic	to	10.3.1.1
Example:	ip.host==www.wireshark.org[34]
Display	traffic	to	or	from	the	IP	address	that	resolves	to	www.wireshark.org

Filter	on	Traffic	to	or	from	a	Range	of	Addresses
You	can	use	the	ip.addr	or	ipv6.addr	filters	with	the	>	or	<	comparison	operators	and	the	logical	operator
&&	(and)	to	look	for	packets	that	contain	an	address	within	a	range.

Example:	ip.addr	>	10.3.0.1	&&	ip.addr	<	10.3.0.5
Display	traffic	to	or	from	10.3.0.2,	10.3.0.3	or	10.3.0.4
Example:	(ip.addr	>=	10.3.0.1	&&	ip.addr	<=	10.3.0.6)	&&	!ip.addr==10.3.0.3
Display	traffic	to	or	from	10.3.0.1,	10.3.0.2,	10.3.0.4,	10.3.0.5	or	10.3.0.6—the	IP	address	10.3.0.3
is	excluded	from	the	range	specified
Example:	ipv6.addr	>=	fe80::	&&	ipv6.addr	<	fec0::
Display	traffic	to	or	from	IPv6	addresses	beginning	with	0xfe80	thorough	0xfec0.

Filter	on	Traffic	to	or	from	an	IP	Subnet
You	can	define	a	subnet	in	CIDR	(Classless	Interdomain	Routing)	format	with	the	ip.addr	field	name.	This
format	uses	the	IP	address	followed	by	a	slash	and	a	suffix	that	indicates	the	number	of	bits	that	define	the
network	portion	of	the	IP	address.

Example:	ip.addr==10.3.0.0/16
Display	traffic	that	contains	an	IP	address	starting	with	10.3	in	the	source	IP	address	field	or
destination	IP	address	field
Example:	ip.addr==10.3.0.0/16	&&	!ip.addr==10.3.1.1
Display	traffic	that	contains	an	IP	address	starting	with	10.3	in	the	source	IP	address	field	or
destination	IP	address	field	except	10.3.1.1
Example:	!ip.addr==10.3.0.0/16	&&	!ip.addr==10.2.0.0/16
Display	all	traffic	except	traffic	that	contains	an	IP	address	starting	with	10.3	or	10.2	in	the	source	IP
address	field	or	destination	IP	address	field

	Lab	18:	Filter	on	Traffic	to	or	from	Online	Backup	Subnets
In	this	lab,	we	will	apply	a	subnet	display	filter	to	examine	traffic	to	or	from	a	backup	server	for	Memeo
which	offers	an	online	backup	product.	This	traffic	runs	in	the	background,	constantly	checking	in	with	the
server.

Step	1:	Open	mybackground101.pcapng.

Step	2:	Apply	a	display	filter	for	DNS	traffic.	Note	the	IP	addresses	supplied	for	the	api.memeo.info,
api.memeo.com,	and	memeo.info	hosts.	They	all	begin	with	216.115.74.	We	will	build	a	subnet	filter
based	on	these	starting	bytes.	We	scrolled	to	the	right	in	the	image	below	to	see	more	of	the	Info	column.

Step	3:	Apply	a	display	filter	for	ip.addr==216.115.74.0/24	to	view	all	traffic	to	or	from	any	of	the	hosts
on	this	subnet.	There	should	be	51	packets	that	match	your	display	filter.

Step	4:	[Lab	Clean-up]	Click	the	Clear	button	to	remove	your	display	filter	before	continuing.

If	you	want	to	filter	the	traffic	to	or	from	the	Memeo	subnets	out	of	view,	apply	the	same	filter,	but
precede	it	with	the	not	("!")	operator)—!ip.addr==216.115.74.0/24.

3.6.	Quickly	Filter	on	a	Field	in	a	Packet
When	you're	looking	for	all	traffic	that	contains	a	particular	characteristic,	you	can	go	the	long	way	or
take	the	short	path.	Unless	you	are	training	for	a	marathon,	take	the	short	path.	Although	you	can	type
display	filters	and	click	Apply,	using	the	right-click	method	is	a	faster	way	to	build	and	apply	display
filters.

You	can	right-click	on	any	field	or	characteristic	in	a	packet	and	select	either	Apply	as	Filter	(which
creates	and	applies	the	filter	right	away)	or	Prepare	a	Filter	(which	puts	the	new	filter	in	the	display
filter	area,	but	does	not	automatically	apply	it	to	the	trace	file).

Work	Quickly—Use	Right-Click	|	Apply	as	Filter
For	example,	in	Figure	68	we	opened	http-espn101.pcapng.	In	the	Packet	Details	pane	of	frame	8,	we
expanded	the	HTTP	section	and	right-clicked	on	the	Request	URI	line	that	indicates	the	user	wants	to
download	the	main	page	of	a	web	site	(/).	We	selected	Apply	as	Filter	|	Selected.

Figure	68.	Use	the	right-click	method	to	quickly	apply	a	filter	based	on	content	in	a	field	or	on	a	packet	characteristic.	[http-
espn101.pcapng]

Wireshark	creates	the	proper	display	filter	(http.request.uri=="/")	and	applies	it	to	the	trace	file.	We	now
have	two	packets	displayed.	It	appears	this	user	is	requesting	the	main	page	from	two	different	IP
addresses,	as	shown	in	Figure	69.

Figure	69.	Two	packets	matched	our	filter	for	http.request.uri=="/".	[http-espn101.pcapng]

If	you	want	to	exclude	these	types	of	HTTP	requests	from	view,	simply	add	an	exclamation	point	or	the
word	not	before	the	filter.	This	is	called	an	exclusion	filter.	You	can	also	create	this	exclusion	filter	by
right-clicking	on	a	GET	request	for	the	default	page	and	selecting	Apply	as	Filter	|	Not	Selected[35].

Using	this	exclusion	filter	on	the	http-espn101.pcapng	trace	file	would	display	4,898	packets,	but	it
would	not	be	a	very	interesting	set	of	packets	to	wade	through.	Consider	expanding	this	filter	to	indicate
that	you	are	interested	in	the	other	HTTP	GET	requests.

Leaving	your	exclusion	filter	in	the	display	filter	area,	locate	an	HTTP	GET	request	packet	(packet	70,
for	example).

Expand	the	HTTP	section	so	you	can	see	the	Request	Method:	GET	request	line.	Right-click	this	line	and
select	Apply	as	Filter.	This	time	you	are	going	to	add	on	to	the	existing	filter	using	the	...and	Selected
option.

The	filter	options	beginning	with	...	are	used	to	add	on	to	the	filter	shown	in	the	display	filter	area.

After	selecting	...	and	Selected,	your	display	filter	should	look	as	follows.	Now	146	packets	match	your
filter.	You	are	looking	at	all	the	HTTP	GET	requests	except	for	the	default	page	requests	(/).

Be	Creative	with	Right-Click	|	Prepare	a	Filter
Use	Prepare	a	filter	when	you	want	to	change	the	filter	or	check	the	syntax	before	it	is	applied.	For
example,	perhaps	you	want	to	know	if	anyone	has	made	a	request	for	a	.jpg	file.	Right-click	the	Request
URI	line	in	packet	70	of	http-espn101.pcapng	and	select	Prepare	a	Filter	|	Selected.

Wireshark	places	http.request.uri=="/prod/scripts/mbox.js"	in	the	display	filter	area,	but	it	does	not	apply
the	filter	to	the	traffic.	Change	the	display	filter	to	http.request.uri	contains	"jpg"	and	click	Apply.	Twenty-
two	packets	should	match	your	new	filter,	as	shown	in	Figure	70.

Figure	70.	After	right-clicking	on	the	Request	URI	line	and	selecting	Prepare	a	Filter,	change	your	filter	to	look	for	frames	that
contain	"jpg"	in	this	field.	[http-espn101.pcapng]

Right-Click	Again	to	use	the	"..."	Filter	Enhancements
When	you	performed	the	right-click	Apply	as	Filter	and	Prepare	a	Filter	operations,	you	saw	four	other
filter	options	that	begin	with	"...",	as	shown	in	Figure	71.	In	this	example,	we	still	have	our
http.request.uri	contains	"jpg	"	filter	and	we	also	want	to	look	for	go.espn.com	in	the	Referer[36]	line.

Any	filter	option	that	begins	with	"..."	will	be	appended	to	the	existing	display	filter.

Figure	71.	Use	the	...	filter	options	to	expand	an	existing	display	filter.	[http-espn101.pcapng]

The	following	list	demonstrates	how	the	add-on	filters	can	be	used	if	we	already	have	a	tcp.port==80
filter	in	place.

Right-click	on	Request	Method:	GET	and	choose	Selected
Filter	created:	http.request.method	==	"GET"
This	will	replace	the	current	display	filter	and	display	all	HTTP	packets	that	contain	the	GET
request	method.
Right-click	on	Request	Method:	GET	and	choose	Not	Selected
Filter	created:	!(http.request.method	==	"GET")
This	will	replace	the	current	display	filter	and	display	any	packets	except	HTTP	packets	that	contain
the	HTTP	GET	request	method.
Right-click	on	Request	Method:	GET	and	choose	...	and	Selected
Filter	created:	(tcp.port==80)	&&	(http.request.method	==	"GET")
This	will	display	packets	to	or	from	port	80	that	contain	the	HTTP	GET	request	method.
Right-click	on	Request	Method:	GET	and	choose	...	or	Selected
Filter	created:	(tcp.port==80)	||	(http.request.method	==	"GET")
This	will	display	packets	to	or	from	port	80	as	well	as	any	HTTP	packets	that	contain	the	GET
request	method.	For	example,	if	your	HTTP	traffic	uses	port	81,	you	will	still	see	all	the	HTTP	GET
requests	from	that	traffic.
Right-click	on	Request	Method:	GET	and	choose	...	and	Not	Selected
Filter	created:	(tcp.port==80)	&&	!(http.request.method	==	"GET")
This	will	display	all	traffic	to	or	from	port	80,	but	not	any	HTTP	packets	on	that	port	that	contain	the
GET	request	method.

Right-click	on	IP	Source	Address	10.2.2.2	and	choose	...	or	Not	Selected
Filter	created:	(tcp.port==80)	||	!(ip.src==10.2.2.2)
This	will	display	packets	to	or	from	port	80	or	any	traffic	that	is	not	from	10.2.2.2

Watch	out	for	the	...or	Not	Selected	option.	Many	times	people	use	this	by	mistake	when	they	want	to
add	on	to	an	exclusion	filter	(something	that	hides	specific	traffic	types).
For	example,	if	you	don't	want	to	see	ARP	traffic	or	DNS	traffic,	using	the	...or	Not	Selected	option
would	create	!arp	||	!dns.	This	filter	would	not	do	anything.	DNS	packets	would	be	shown	because	they
are	not	ARP	packets	(matching	the	first	side	of	the	or	operator)	and	ARP	packets	would	be	shown
because	they	are	not	DNS	packets	(matching	the	second	side	of	the	or	operator).
If	you	are	trying	to	filter	packets	out	of	view,	most	likely	you	want	the	...and	Not	Selected	option.

	Lab	19:	Filter	on	DNS	Name	Errors	or	HTTP	404	Responses
In	this	lab	we	will	look	for	specific	DNS	or	HTTP	error	responses	using	the	right-click	method.	This	is	a
great	filter	that	you	may	want	to	save.

Step	1:	Open	http-errors101.pcapng.	Scroll	through	and	look	at	the	Info	column	of	the	Packet	List	pane
to	see	the	problems	in	this	web	browsing	session.	If	you	applied	a	filter	while	following	along	in	the
earlier	section,	clear	it	now.

Step	2:	Click	on	frame	18.	This	is	a	DNS	Name	Error	response.	Expand	the	DNS	subtrees	so	you	can
see	the	fields	inside	the	Flags	section,	as	shown	below.	Right-click	on	the	Reply	code:	No	such	name	(3)
field	and	select	Prepare	a	Filter	|	Selected.	The	first	part	of	your	filter	appears	in	the	filter	area.

	

Step	3:	Click	on	frame	9.	This	is	an	HTTP	404	Response.	We	will	add	on	to	our	existing	filter	and	view
it	before	applying	it.

In	frame	9,	expand	the	HTTP	section	of	the	packet.	Right-click	on	the	Status	Code:	404	line,	select
Prepare	a	Filter	|	...or	Selected.	Your	display	filter	area	should	show	(dns.flags.rcode==3)	||
(http.response.code==404).

Step	4:	Click	Apply.	Three	frames	should	match	your	filter.

Step	5:	[Lab	Clean-up]	When	you've	finished	looking	through	the	frames	that	matched	your	filter,	click	the
Clear	button	to	remove	the	filter.	If	you	need	to	use	this	filter	again	soon,	click	the	arrow	to	the	right	of
the	filter	area.	We	set	Wireshark	to	remember	the	last	30	display	filters	in	Lab	6.

This	is	a	great	filter,	but	it	can	be	improved	by	looking	for	all	DNS	or	HTTP	error	reply	codes
(dns.flags.rcode	!=	0	or	http.response.code	>	399).	Note	that	the	display	filter	area	turns	yellow	because
of	the	"!=",	but	this	filter	will	actually	work	fine.

3.7.	Filter	on	a	Single	TCP	or	UDP	Conversation
When	you	want	to	analyze	communication	between	a	client	application	and	a	server	process,	you	are
looking	for	a	"conversation."	That	conversation	is	based	on	the	IP	addresses	and	port	numbers	of	the
client	application	and	the	server	process.	Often	your	trace	file	will	contain	hundreds	of	conversations.
Knowing	how	to	quickly	locate	and	filter	on	the	conversation	you	are	interested	in	will	move	your
analysis	process	forward	quickly.

The	following	lists	four	ways	to	extract	a	single	TCP	or	UDP	conversation	from	a	trace	file:

Extract	a	UDP/TCP	conversation	by	right-clicking	a	UDP	or	TCP	packet	in	the	Packet	List	pane	and
selecting	Conversation	Filter	|	[TCP|UDP].
Extract	a	UDP/TCP	conversation	by	right-clicking	a	UDP	or	TCP	packet	in	the	Packet	List	pane	and
selecting	Follow	[TCP|UDP]	Stream.
Extract	a	conversation	from	Wireshark	Statistics	|	Conversations.
Extract	a	TCP	conversation	based	on	the	Stream	index	number	(in	the	TCP	header).

Use	Right-Click	to	Filter	on	a	Conversation
When	you	browse	through	packets	and	you	want	to	quickly	filter	on	a	TCP	conversation,	right-click	on
any	packet	in	the	Packet	List	pane	and	select	Conversation	Filter	|	TCP,	as	shown	in	Figure	72.

Figure	72.	Right-click	on	a	packet	to	filter	on	a	specific	conversation.	[http-espn101.pcapng]

We	right-clicked	on	packet	508	in	http-espn101.pcapng	and	selected	Conversation	Filter	|	TCP.
Wireshark	created	and	applied	the	following	display	filter	to	the	traffic:

(ip.addr	eq	24.6.173.220	and	ip.addr	eq	184.84.222.48)	and	(tcp.port	eq	19953	and	tcp.port	eq	80)

You	can	use	the	same	method	to	filter	on	a	conversation	based	on	IP	addresses,	Ethernet	addresses,	or
UDP	address/port	number	combinations.

Use	Right-Click	to	Follow	a	Stream
To	view	the	application	commands	and	data	exchanged	in	a	conversation	as	well	as	apply	a	conversation
filter,	right-click	on	any	packet	in	the	Packet	List	pane	and	select	Follow	[UDP|TCP]	Stream,	as	shown
in	Figure	73.	If	you	select	Follow	UDP	Stream,	the	display	filter	will	be	based	on	the	IP	addresses	and
port	numbers.	If	you	select	Follow	TCP	Stream,	the	display	filter	will	be	based	on	the	TCP	Stream	Index
number.

Figure	73.	Right-click	on	a	TCP	or	UDP	packet	in	the	Packet	List	pane	and	select	Follow	[UDP|TCP]	Stream.	This	creates	a
conversation	filter	based	on	the	selected	packet	while	displaying	the	conversation	in	a	separate	window.

Filter	on	a	Conversation	from	Wireshark	Statistics
Select	Statistics	|	Conversations	to	view,	sort,	and	quickly	filter	on	a	conversation.	Click	one	of	the
protocol	tabs	at	the	top	of	the	Conversations	window	to	select	the	conversation	type	in	which	you	are
interested.

Right-click	on	a	conversation	line	to	select	Apply	as	Filter,	Prepare	a	Filter,	Find	a	Packet,	or
Colorize	Conversation.

When	you	select	Apply	as	Filter	or	Prepare	a	Filter,	some	interesting	options	appear.	In	Figure	74,	we
selected	Statistics	|	Conversations	and	sorted	on	the	Packets	column.	Next,	we	right-clicked	on	the	top
conversation	and	saw	the	option	to	apply	or	prepare	a	filter	using	the	standard	options	(Selected,	Not
Selected,	etc.).	We	can	also	choose	to	define	the	direction	or	inclusion	of	"Any"	in	the	filter.

Under	the	UDP	and	TCP	tabs,	the	term	"A"	refers	to	both	columns	labeled	with	"A"—the	Address	A	and
Port	A	column	(ip.addr==24.6.173.220	&&	tcp.port==19996).

Figure	74.	Right-click	on	a	row	and	select	Apply	as	Filter	to	view	special	options	for	conversation	filtering.	[http-espn101.pcapng]

You	can	perform	the	same	basic	steps	from	the	Statistics	|	Endpoints	window	although	you	will	not
have	the	"A"	and	"B"	designations	available.

Filter	on	a	TCP	Conversation	Based	on	the	Stream	Index	Field
In	TCP	headers,	you	can	also	right-click	on	the	Stream	Index	field	to	create	a	TCP	conversation	filter.	In
Figure	75,	we	expanded	a	TCP	header	to	highlight	and	right-click	on	the	Stream	Index	field	and	selected
Apply	as	Filter,	we	can	create	a	tcp.stream==2	conversation	filter.

Figure	75.	Wireshark	gives	each	TCP	conversation	a	unique	Stream	index	number.	[http–espn101.pcapng]

This	TCP	Stream	index	number	can	be	a	great	help	when	you	are	working	with	a	trace	file	that	has
many	intertwined	conversations.	Right-click	on	this	field	and	Apply	as	Column.	Use	the	values	in	your
TCP	Stream	index	column	to	easily	identify	separate	conversations.

	Lab	20:	Detect	Background	File	Transfers	on	Startup
There	may	be	a	number	of	background	processes	that	run	when	you	start	up	your	machine.	Some	of	these
may	update	your	virus	detection	mechanism,	your	operating	system,	or	applications.	In	this	lab,	you	will
detect	and	filter	on	the	most	active	conversation	of	a	host	that	is	just	starting	up.

Step	1:	Open	gen-startupchatty101.pcapng.

Step	2:	Select	Statistics	|	Conversations	|	TCP	and	sort	by	the	Bytes	column	from	high	to	low	to	locate
the	most	active	TCP	conversation	based	on	byte	count.

Step	3:	Right-click	on	the	most	active	conversation	and	select	Apply	as	Filter	|	Selected	|	A	<—>	B.	The
Status	Bar	should	indicate	2,886	packets	matched	your	filter.	The	TCP	peer	in	this	conversation	is
50.17.223.168.

We	can	see	this	is	a	Transport	Layer	Security	(TLS)	conversation.

Step	4:	Frame	311	is	the	first	packet	in	this	conversation.	Click	the	Clear	button	to	remove	your	filter	and
look	for	a	name	resolution	process	before	frame	311.	Based	on	frames	309	and	310,	this	appears	to	be	a
Dropbox	server.	The	client	must	be	checking	in	and	downloading	a	file	from	their	Dropbox	folder.

Step	5:	[Lab	Clean-up]	Wireshark	will	keep	display	filters	in	place.	Click	the	Clear	button	to	remove	any
unwanted	display	filters.

You	can	use	the	right-click	method	to	quickly	apply	filters	directly	from	many	Wireshark	statistics
windows,	including	the	Conversations,	Endpoints,	and	Protocol	Hierarchy	windows.

3.8.	Expand	Display	Filters	with	Multiple
Include	and	Exclude	Conditions
There	will	be	many	times	when	you	want	to	filter	on	the	values	in	more	than	one	field.	For	example,	you
might	be	interested	in	seeing	all	packets	that	contain	the	command	GET	in	the	HTTP	Request	Method	field
and	".exe"	in	the	HTTP	Request	URI	field.	You	should	combine	these	two	conditions	using	a	logical
operator.

Use	Logical	Operators
Wireshark	understands	four	logical	operators.	The	next	list	provides	examples	of	how	Wireshark	logical
operators	can	be	used	to	expand	your	display	filters	by	adding	conditions.

&&	or	and
Example:	ip.src==10.2.2.2	&&	tcp.port==80
View	all	IPv4	traffic	from	10.2.2.2	that	is	to	or	from	port	80
||	or	or
Example:	tcp.port==80	||	tcp.port==443
View	all	TCP	traffic	to	or	from	ports	80	or	443
!	or	not
Example:	!arp
View	all	traffic	except	ARP	traffic
!=	or	ne
Example:	tcp.flags.syn	!=	1
View	TCP	frames	that	do	not	have	the	TCP	SYN	flag	(synchronize	sequence	numbers)	set	to	1

Why	didn't	my	ip.addr	!=	filter	work?
People	often	get	stuck	on	the	!=	operator.	Here	are	some	tips	on	how	Wireshark	interprets	this	operator.

Incorrect:	ip.addr	!=	10.2.2.2

Display	packets	that	do	not	have	10.2.2.2	in	the	IP	source	address	field	or	IP	destination	address	field.	If
an	address	other	than	10.2.2.2	is	contained	in	the	source	or	destination	IP	address	fields,	the	packet	will
be	displayed.	This	uses	an	implied	or	and	will	not	filter	out	any	packets.

Correct:	!ip.addr	==	10.2.2.2

Display	packets	that	do	not	have	10.2.2.2	in	the	IP	source	address	field	and	also	does	not	have	10.2.2.2	in
the	destination	address	field.	This	is	the	proper	filter	syntax	when	excluding	traffic	to	or	from	a	specific
IP	address.

Why	didn't	my	!tcp.flags.syn==1	filter	work?
Just	when	you	begin	to	embrace	the	process	of	splitting	up	the	"!"	from	the	"="...	something	isn't	quite
right.	If	you	were	trying	to	display	all	TCP	packets	that	did	not	have	the	SYN	bit	set	to	1,	this	filter	will
not	work.

Incorrect:	!tcp.flags.syn==1

This	filter	is	interpreted	as	"display	all	packets	that	do	not	have	a	TCP	SYN	bit	set	to	1."	Other	protocol
packets,	such	as	UDP	and	ARP	packets	will	match	this	filter,	after	all,	they	don't	have	a	TCP	SYN	bit	set
to	1.

Correct:	tcp.flags.syn	!=1

This	filter	will	only	display	TCP	packets	that	contain	a	SYN	set	to	0.

Don't	be	afraid	to	use	the	!=	operator	when	you	know	there	is	only	one	field	that	matches	your	filter
field	name.	Sometimes	this	is	the	best	filter	operator	to	use.

3.9.	Use	Parentheses	to	Change	Filter	Meaning
Be	aware	how	parentheses	can	change	the	meaning	of	your	filters	when	you	create	and	add	conditions	to
your	filter.

For	example,	consider	the	following	display	filters:

(tcp.port==80	&&	ip.src==10.2.2.2)	||	tcp.flags.syn==1
tcp.port==80	&&	(ip.src==10.2.2.2	||	tcp.flags.syn==1)

Placement	of	parentheses	changes	the	meaning	of	these	two	filters.

In	the	first	example	above,	port	80	traffic	from	10.2.2.2	will	be	displayed.	In	addition,	the	first	packet	of
all	TCP	handshakes	(regardless	of	port	numbers	or	IP	addresses)	will	be	displayed.

In	the	second	example	above,	all	port	80	traffic	will	be	displayed.	In	addition,	the	first	packet	of	all	TCP
handshakes	from	10.2.2.2	will	be	displayed.

	Lab	21:	Locate	TCP	Connection	Attempts	to	a	Client
Client	processes	send	TCP	connection	requests	to	server	processes.	There	are	very	few	reasons	to	allow
incoming	TCP	connections	to	user	machines	on	your	network	(as	they	typically	won't	be	running	server
processes).	In	this	lab	we	will	create	a	display	filter	that	detects	incoming	TCP	connection	attempts	to
anyone	on	a	particular	subnet.	We	will	focus	on	subnet	24.6.0.0/16.

Step	1:	Open	general101b.pcapng.

Step	2:	We	first	want	to	detect	TCP	connection	attempts	based	on	the	TCP	flags	area.	The	first	frame	in
this	trace	file	is	a	TCP	connection	request	as	noted	by	the	[SYN]	in	the	Info	column.	The	response
indicates	[SYN,	ACK]	in	the	Info	column.

In	the	Packet	List	pane,	expand	theTCP	header	of	frame	1	and	right-click	on	the	Flags	line.	Select
Prepare	a	Filter	|	Selected.	This	tcp.flags==0x0002	filter	will	display	the	first	packet	(SYN)	of	the	TCP
handshake.

If	we	had	created	a	filter	for	just	the	TCP	SYN	bit	set	to	1	(tcp.flags.syn==1),	we	would	see	the	first	two
packets	of	each	handshake	(the	SYN	and	SYN/ACK	packets).

Step	3:	Click	Apply	to	see	what	this	filter	does.	Unfortunately,	this	filter	alone	won't	help	us.	We	want	to
see	if	anyone	tries	to	make	a	TCP	connection	to	any	of	our	clients	on	this	network.	Add	&&
ip.dst==24.6.0.0/16	to	your	filter	and	click	Apply	again.	Only	5	packets	should	match	your	new	filter.

Our	results	in	this	lab	indicate	that	121.125.72.180	and	24.6.169.43	are	trying	to	make	a	connection	to
24.6.173.220.	Since	our	24.6.173.220	client	doesn't	run	server	software,	this	is	questionable	traffic.

Step	4:	[Lab	Clean-up]	Click	the	Clear	button	to	remove	your	display	filter	before	continuing.

Run	this	same	filter	on	mybackground101.pcapng	to	spot	another	suspicious	incoming	connection
attempt.	We	found	this	incoming	connection	attempt	in	Analyze	Sample	Background	Traffic.

3.10.	Determine	Why	Your	Display	Filter	Area	is
Yellow
As	you	become	more	adventurous	putting	together	display	filters,	you	will	likely	hit	a	point	when
Wireshark	colors	the	display	filter	area	yellow	or	even	red.	Wireshark	performs	error	detection	on	every
display	filter	and,	based	on	the	error	detection	results,	colors	your	display	filter	area	background	red
(error),	green	(ok),	or	yellow	(what	the	heck?).

Red	Background:	Syntax	Check	Failed
When	the	display	filter	area	is	red,	the	filter	will	not	work	at	all.	When	you	click	the	Apply	button,
Wireshark	will	generate	a	message	such	as	"ip.addr=10.2.2.2"	isn't	a	valid	display	filter:	"="	was
unexpected	in	this	context.	See	the	help	for	a	description	of	the	display	filter	syntax.

Green	Background:	Syntax	Check	Passed
When	the	display	filter	background	is	green,	the	filter	will	work	based	on	the	syntax	checks.	Wireshark
does	not	do	a	"logic	check,"	however.	Consider	the	filter	http	&&	udp.	Normal	HTTP	communications	run
over	TCP,	not	UDP.	No	packets	should	match	this	filter.	Although	the	filter	is	illogical,	it	can	be
processed	because	it	passes	the	syntax	check.

Yellow	Background:	Syntax	Check	Passed	with	a	Warning	(!=)
When	the	display	filter	background	is	yellow,	the	filter	has	passed	the	syntax	check,	but	may	not	give	you
the	results	you	expect.	This	color	is	automatically	triggered	when	Wireshark	sees	"!="	in	a	filter.
Remember	to	avoid	this	filter	when	you	specify	a	field	name	that	may	match	two	actual	fields	in	a	packet.
For	example,	ip.addr	indicates	you	are	looking	at	both	the	source	and	destination	IPv4	address	fields.
Another	example	would	be	tcp.port	which	would	look	at	both	the	source	and	destination	port	number
fields.

If	you	use	a	field	name	that	refers	to	a	single-occurrence	field,	go	ahead	and	use	the	"!="	syntax.	For
example,	ip.src	!=	10.2.3.1	would	work	perfectly	even	though	Wireshark	colored	the	display	filter
background	yellow.	There	is	only	one	field	that	could	match	this	filter.

The	two	most	common	causes	of	a	red	background	are	(1)	a	typo	in	the	filter	and	(2)	using	capture
filter	syntax	instead	of	display	filter	syntax.	No	matter	what	you	try	to	do,	a	filter	with	a	red
background	will	not	run	on	Wireshark.

3.11.	Filter	on	a	Keyword	in	a	Trace	File
There	will	be	times	when	you	are	looking	for	a	particular	word,	such	as	"admin"	in	a	trace	file.	You	may
want	to	look	through	entire	frames	or	in	particular	fields.	You	may	even	want	to	search	for	a	text	string	in
upper	case	or	lower	case.	All	of	this	is	possible.

Use	contains	in	a	Simple	Keyword	Filter	through	an	Entire	Frame
You	can	use	frame	contains	"string"	to	look	for	a	keyword	throughout	a	frame.	For	example,	frame
contains	"admin"	would	look	for	the	string	admin	(all	in	lower	case)	through	the	entire	frame,	from	the
Ethernet	header	through	the	Ethernet	trailer.

This	is	really	a	simple	and	lazy	filter.	It	might	yield	too	many	false	positives.	For	example,	if	you	use	this
filter	when	you	are	only	interested	in	finding	out	if	someone	tried	to	login	to	the	admin	FTP	account,	you
might	also	see	people	browsing	to	www.admin.com	and	file	requests	for	adminhandbook.pdf.

Use	contains	in	a	Simple	Keyword	Filter	based	on	a	Field
Consider	building	your	filter	to	look	just	at	the	field	of	interest	to	reduce	false	positives.	For	example,	if
you	look	inside	an	FTP	packet	that	contains	a	user	name	(packet	6	in	ftp–clientside101.pcapng)	and
expand	the	FTP	portion	fully	in	the	Packet	Details	pane,	you'll	see	the	FTP	user's	name	is	in	the
ftp.request.arg	field	as	noted	on	the	Status	Bar	in	Figure	76.	You	can	simply	type	the	filter	ftp.request.arg
contains	"admin"	to	look	for	"admin"	in	the	FTP	request	argument	field.

Figure	76.	Click	on	a	field	and	look	at	the	Status	Bar	to	find	out	the	field	name	to	use	in	your	filters.	[ftp–clientside101.pcapng]

Use	matches	and	(?i)	in	a	Keyword	Filter	for	Upper	Case	or	Lower
Case	Strings
If	you	are	looking	for	Admin	with	an	initial	upper	case	or	lower	case	letter,	you	can	expand	your	last
display	filter	with	a	logical	operator.	The	filter	ftp.request.arg	contains	"admin"	or	ftp.request.arg
contains	"Admin"	would	work.

Wireshark	supports	Perl-Compatible	Regular	Expressions	(PCRE)	in	display	filters.	Regular	expressions
are	special	text	strings	used	to	define	a	search	pattern.	If	you	want	to	filter	for	an	entire	string	in	upper
case	or	lower	case,	consider	using	Regular	Expressions	(regex)	and	the	matches	operator.

For	example,	to	look	for	"admin"	in	any	variation	of	upper	case	or	lower	case	letters	in	the	FTP	argument
field,	use	ftp.request.arg	matches	"(?i)admin".	The	matches	operator	indicates	that	you	are	using	Regular
Expressions	and	the	(?i)	indicates	that	the	search	is	case	insensitive.

What	if	you	are	looking	anywhere	in	a	frame	for	a	string	that	contains	an	upper	case	or	lower	case
character	at	a	specific	location	in	a	string?	For	example,	consider	the	following	strings:

buildingAeng
buildingaeng

We	know	"building"	and	"eng"	are	always	in	lower	case,	but	the	character	between	those	strings	can	be
either	upper	case	or	lower	case.

In	Wireshark,	we	can	use	frame	matches	"building[Aa]eng".	That	means	we	are	looking	for	an	"A"	or	"a"
between	the	lower	case	strings.	If	you	are	also	interested	in	upper	case	or	lower	case	B	in	that	location,
expand	your	display	filter	to	frame	matches	"building[AaBb]eng".

Use	matches	for	a	Multiple-Word	Search
There	is	also	a	simple	way	to	combine	multiple	search	words	with	regex.	Combine	the	words	in
parentheses	and	separate	them	with	"|".	For	example,	if	we	are	interested	in	finding	the	words	cat	or	dog
in	upper	case	or	lower	case	anywhere	in	a	trace	file,	we	can	use	the	filter	frame	matches	"(?i)(cat|dog)".

Take	the	time	to	learn	regex.	Visit	Jan	Goyvaerts'	regular	expressions.info	web	site.	If	you	plan	on
adding	more	complex	regex	filters	to	Wireshark,	consider	purchasing	Regex	Buddy	and	Regex	Magic—
both	products	were	created	by	Jan	Goyvaerts	and	are	fabulous	tools	for	building,	testing,	and
deciphering	regex-based	display	filters.	Regex	is	used	in	Wireshark	as	well	as	Nmap	and	Snort.

	Lab	22:	Filter	to	Locate	a	Set	of	Key	Words	in	a	Trace	File
In	this	lab	we	will	use	the	matches	operator	to	find	the	keywords	sombrero	or	football	in	upper	case	or
lower	case	anywhere	in	a	trace	file.

Step	1:	Open	http-pictures101.pcapng.

Step	2:	Let's	begin	with	a	simple	keyword	filter	for	sombrero.	In	the	display	filter	area,	type	frame
contains	"sombrero".	One	packet	should	match	this	filter.

Step	3:	Now	enhance	your	key	word	filter	using	the	matches	operator.	Replace	your	previous	filter	with
frame	matches	"(?i)(sombrero|football)".	Note	that	the	monospace	font	makes	it	appear	as	if	there	is	a
space	between	the	")"	and	"(",	but	there	is	no	space.	Three	packets	should	match	this	filter.

Step	4:	[Lab	Clean-up]	Click	the	Clear	button	to	remove	your	filter	before	continuing.

Filtering	on	key	words	is	simple	using	the	matches	operator	and	regular	expressions.	This	is	a	useful	skill
when	looking	for	passwords	or	user	account	names	or	known-to-be-malicious	patterns	in	your	trace	files.

3.12.	Use	Wildcards	in	Your	Display	Filters
Sometimes	you	may	need	to	look	for	variations	in	a	string.	In	this	case,	you	need	to	use	a	wildcard	in	your
display	filter.	This	is	where	a	solid	understanding	of	regular	expressions	really	comes	in	handy.

Use	Regex	with	"."
In	Wireshark,	you	can	use	regex	with	the	matches	operator	to	represent	a	string	with	variables.	In	regex,
the	"."	represents	any	character	except	line	break	and	carriage	return.	When	you	are	looking	for	the	literal
".",	you	must	escape	it	with	a	backslash	("\").

The	display	filter	ftp.request.arg	matches	"me.r"	uses	"."	as	a	wildcard.

This	filter	will	look	at	the	string	after	an	FTP	command	(ftp.request.arg)	for	the	letters	"me"	followed	by
any	character	(except	a	line	break	or	a	carriage	return)	and	then	an	"r".	Try	running	this	on	ftp-
crack101.pcapng.	This	filter	will	display	two	packets	that	contain	the	string	symmetry	after	the	PASS
command,	as	shown	in	Figure	77.

Figure	77.	Use	the	matches	operator	with	repeating	wildcards	to	find	passwords	in	use.	[ftp–crack101.pcapng]

Now	change	the	filter	to	allow	two	wildcards	in	between	your	characters.	The	filter	ftp.request.arg
matches	"me..r"	will	find	the	string	homework	in	the	argument	field.

Setting	a	Variable	Length	Repeating	Wildcard	Character	Search
You	can	also	specify	that	the	wildcard	should	be	repeated	numerous	times.	The	display	filter	would	be
ftp.request.arg	matches	"me.{1,3}r".	This	filter	will	look	for	the	"."	(any	character)	once,	twice,	and	three
times	in	between	me	and	r.	In	ftp-crack101.pcapng,	this	filter	displays	packets	that	contain	mercury,
symmetry,	and	homework	in	the	FTP	argument	field.	You	can	also	add	(?i)	in	front	of	me	to	add	case
insensitivity.

Once	you	create	some	great	keyword	filters,	consider	how	you	might	combine	them	into	a	single	filter
and	save	that	one	filter	as	a	button,	as	explained	in	Turn	Your	Key	Display	Filters	into	Buttons.

	Lab	23:	Filter	with	Wildcards	between	Words
In	this	lab	we	will	use	the	matches	operator	to	find	the	keywords	baby	and	smiling	in	a	trace	file.	We	will
see	how	the	repeating	character	option	settings	can	affect	what	matches	your	filter.

Our	display	filter	ftp.request.arg	matches	"me.{1,3}r"	would	look	for	the	"."	up	to	three	times	between	the
"me"	and	"r"	as	mentioned	in	this	section.

This	time	we	will	look	for	the	keywords	baby	and	smiling	with	up	to	3	characters	separating	the	words.

Step	1:	Open	http-pictures101.pcapng.

Step	2:	Type	the	filter	http.request.uri	matches	"baby.{1,3}smiling".	Two	packets	should	match	this
filter.

Step	3:	Now	change	{1,3}	to	{1,20}	and	apply	this	new	filter.	Three	packets	should	now	match	this	filter
because	the	file	stock-video-10195917-baby-on-belly-smiling.jpg	has	the	two	words	within	20
characters.

Step	4:	[Lab	Clean-up]	Click	the	Clear	button	to	remove	your	display	filter	before	continuing.

This	is	another	great	type	of	filter	to	master.	Many	times,	when	looking	for	security	breaches,	we	try	to
locate	strings	within	a	certain	distance	from	each	other.

3.13.	Use	Filters	to	Spot	Communication	Delays
When	someone	complains	of	slow	network	performance,	look	for	delays	between	packets	as	a	sign	that	a
network	path,	client,	or	server	is	slow.	Create	a	filter	to	look	for	these	delays	to	spot	these	problems
faster.

There	are	two	time	measurements	that	can	be	used	to	filter	on	delays	in	a	trace	file—basic	delta	time	and
TCP	delta	time.

Filter	on	Large	Delta	Times	(frame.time_delta)
The	frame.time_delta	field	is	located	in	the	Frame	section	of	each	packet.	You	can	create	a	filter	for	large
values	in	this	field.	To	set	a	filter	for	delays	over	1	second,	use	frame.time_delta	>	1.	Keep	in	mind,
however,	that	this	filter	looks	at	all	the	packets	in	the	trace	file	to	display	the	time	from	the	end	of	one
packet	to	the	end	of	the	next	packet.	Conversations	can	be	intermingled,	however,	and	delays	in	a	UDP	or
TCP	conversation	can	go	unnoticed	because	of	intervening	packets	from	other	conversations.

If	you	are	troubleshooting	a	UDP-based	application,	filter	on	UDP	(udp)	and	then	use	File	|	Export
Specified	Packets	and	save	a	new	trace	file.	Apply	your	frame.time_delta	filter	to	the	new	trace	file.

Filter	on	Large	TCP	Delta	Times	(tcp.time_delta)
The	tcp.time_delta	value	can	only	be	used	after	you	enable	Wireshark's	Calculate	conversation
timestamps	TCP	preference.

In	Lab	6,	you	enabled	the	TCP	timestamps	by	selecting	Edit	|	Preferences	|	(+)	Protocols	|	TCP	and
checking	the	Calculate	conversation	timestamps	setting.	Once	this	setting	is	enabled,	a	[Timestamp]
section	is	added	to	the	end	of	each	expanded	TCP	header	in	the	Packet	Details	pane,	as	shown	in	Figure
78.

We	applied	a	filter	for	TCP	delta	delays	over	1	second	with	tcp.time_delta	>	1.	There	are	four	packets
that	arrived	over	1	second	after	the	previous	packet	in	their	TCP	stream.

Consider	clicking	Save	to	make	this	a	Filter	Expression	button.	See	Turn	Your	Key	Display	Filters	into
Buttons.

Figure	78.	The	new	[Timestamps]	section	appears	after	you	enable	Calculate	conversation	timestamps	in	your	TCP	preferences.	Now
you	can	filter	on	the	TCP	delta	value.	[http-download101d.pcapng]

	Lab	24:	Import	Display	Filters	into	a	Profile
In	this	lab	you	will	download	a	set	of	display	filters	from	www.wiresharkbook.com	and	import	them	into
your	existing	display	filter	file	(dfilters).	Use	this	same	technique	if	you	want	to	move	display	filters	from
one	profile	to	another	on	a	single	host	or	other	Wireshark	systems.

Step	1:	Look	in	the	Status	Bar	to	determine	your	current	profile.	You	should	be	using	the	wireshark101
profile	created	in	Lab	7.

Step	2:	Open	your	personal	configuration	folder	using	Help	|	About	Wireshark	|	Folder	|	Personal
configuration	and	double-clicking	on	the	folder	hyperlink.

Negotiate	to	the	profiles	directory	and	locate	the	wireshark101	directory,	as	shown	below.

	

Step	3:	You	created	a	My	IP	Address	filter	in	Lab	16,	therefore	you	should	already	have	a	dfilters	file.	If
you	don't	have	that	file,	return	to	Lab	16.

Open	the	dfilters	file	with	a	text	editor.

Step	4:	Now	download	the	dfilters_sample.txt	file	from	www.wiresharkbook.com.	This	file	contains	6
display	filters	(and	one	heading	line)	that	we	will	add	to	your	existing	dfilters	file.

Step	5:	Open	dfilters_sample.txt	and	copy	the	contents	to	your	buffer.

Step	6:	Toggle	to	the	dfilters	file	in	your	Wireshark101	directory	and	paste	the	contents	onto	the	end	of
the	display	filters	listed.	Make	sure	you	add	a	blank	line	at	the	end	of	the	dfilters	file	or	your	last
filter	will	not	be	displayed.	Close	and	save	your	edited	dfilters	file.

Step	7:	Return	to	Wireshark.	The	dfilters	file	is	loaded	when	you	load	your	profile.	Change	to	the
Default	profile	and	return	to	the	wireshark101	profile.

http://www.wiresharkbook.com/
http://www.wiresharkbook.com/

Step	8:	Click	on	the	Filter	button	on	the	filter	toolbar.	You	should	see	your	new	display	filters	at	the
bottom	of	the	list[37].

It	is	easy	to	share	filters	because	filters	are	simple	text	files	(cfilters	for	capture	filters	and	dfilters	for
display	filters).	If	you	are	working	on	a	team,	consider	creating	a	master	set	of	filters	that	are	created	and
shared	by	the	team.

3.14.	Turn	Your	Key	Display	Filters	into	Buttons
You	want	your	analysis	processes	to	be	as	efficient	as	possible.	In	order	to	do	this,	make	your	most
popular	display	filters	into	buttons	in	the	display	filter	area.	This	way	you	can	quickly	open	a	trace	file
and	click	a	button	to	filter	on	key	packet	characteristics.

Create	a	Filter	Expression	Button
It	is	very	easy	to	turn	a	display	filter	into	a	button.	Simply	type	your	display	filter	in	the	display	filter	area
and	click	the	Save	button.	Name	your	filter	as	shown	in	Figure	79	and	click	the	OK	button.

Figure	79.	Click	the	Save	button	and	name	your	Filter	Expression	button.

There	are	no	limits	to	the	number	of	Filter	Expression	buttons	you	can	create.	If	you	run	out	of	room	for
your	buttons,	Wireshark	displays	">>",	which	you	can	click	on	to	see	more	buttons.

In	Figure	80,	we	created	six	Filter	Expression	buttons	to	use	when	analyzing	HTTP	traffic.	Not	all	of	the
Filter	Expression	buttons	can	fit	in	the	display	filter	area	because	we	reduced	the	size	of	our	Wireshark
window.	Wireshark	places	one	Filter	Expression	button	(GET|POST)	in	the	display	filter	area,	but	we
must	click	>>	to	view	and	select	one	of	the	remaining	five	Filter	Expression	buttons.

If	we	keep	adding	to	the	Filter	Expression	buttons	list,	eventually,	Wireshark	will	place	a	down	arrow	at
the	bottom	of	the	list	so	we	can	scroll	further	in	the	list.

Figure	80.	Click	>>	to	view	Filter	Expression	buttons	that	won't	fit	in	the	display	filter	area.

Edit,	Reorder,	Delete,	and	Disable	Filter	Expression	Buttons
There	is	a	Save	button	in	the	display	filter	area,	but	there	is	no	Edit	button	and	no	right–click	capability
on	your	new	Filter	Expression	button.	To	edit,	reorder,	delete,	or	disable	your	Filter	Expression	buttons
select	Edit	|	Preferences	|	Filter	Expressions,	as	shown	in	Figure	81.

Figure	81.	You	must	access	Wireshark's	Preferences	window	to	edit,	reorder,	delete,	or	disable	Filter	Expression	buttons.

Edit	the	Filter	Expression	Area	in	Your	preferences	File
Filter	Expression	buttons	are	saved	in	the	preferences	file	of	the	profile	in	which	you	are	currently
working.	Your	current	profile	is	shown	in	the	right-hand	column	of	the	Status	Bar.	To	find	your	profile's
preferences	file,	select	Help	|	About	Wireshark	|	Folders	and	double-click	the	Personal	Configurations
folder	hyperlink.	The	preferences	file	for	the	Default	profile	is	in	this	directory.	The	preferences	files	for
any	other	profiles	are	in	a	directory	under	the	profiles	directory.

The	preferences	file	is	just	a	text	file.	Don't	be	afraid	to	edit	the	file	directly	with	a	text	editor.	Filter
Expression	button	settings	are	maintained	under	the	Filter	Expressions	heading.

The	following	is	a	sample	of	the	Filter	Expression	area	in	the	preferences	file.	These	settings	are	used	to
create	the	Filter	Expression	buttons	seen	in	Figure	81.

#######	Filter	Expressions	########
gui.filter_expressions.label:	GET|POST
gui.filter_expressions.enabled:	TRUE
gui.filter_expressions.expr:	http.request.method	matches	"(GET|POST)"
gui.filter_expressions.label:	CONNECT
gui.filter_expressions.enabled:	TRUE
gui.filter_expressions.expr:	http.request.uri	contains	"CONNECT"
gui.filter_expressions.label:	HEAD
gui.filter_expressions.enabled:	TRUE
gui.filter_expressions.expr:	http.request.uri	contains	"HEAD"
gui.filter_expressions.label:	HTTP4xx
gui.filter_expressions.enabled:	TRUE
gui.filter_expressions.expr:	http.response.code	>	399	&&	http.response.code	<	500
gui.filter_expressions.label:	HTTP5xx
gui.filter_expressions.enabled:	TRUE
gui.filter_expressions.expr:	http.response.code	>	499
gui.filter_expressions.label:	HTTP3xx
gui.filter_expressions.enabled:	TRUE
gui.filter_expressions.expr:	http.response.code	>	299	&&	http.response.code	<	400

These	buttons	are	also	just	lines	in	a	text	file.	When	you	create	some	wonderful	Filter	Expression
buttons,	share	them	with	your	team.

	Lab	25:	Create	and	Import	HTTP	Filter	Expression	Buttons
We	will	begin	by	creating	a	single	Filter	Expression	button	and	then	we'll	import	a	set	of	Filter
Expression	buttons.	At	the	time	this	book	was	written,	there	wasn't	an	easy	way	to	turn	all	your	display
filters	into	Filter	Expression	buttons.	That	would	be	a	great	feature	and	maybe	we'll	see	that	someday	and
we	can	replace	this	lab	with	another	lab	about	conquering	world	hunger	with	customized	profiles.	Until
then,	follow	along	with	this	lab	to	import	the	Filter	Expression	buttons	show	in	Figure	81	into	your
wireshark101	profile.

Step	1:	Open	http-chappellu101b.pcapng.

Step	2:	Type	http.request.method	matches	"(GET|POST)"	in	the	filter	area.	Click	Save.

Enter	GET|POST	to	name	your	Filter	Expression	button	and	click	OK.

The	new	GET|POST	Filter	Expression	button	is	displayed	on	the	display	filter	toolbar.

Step	3:	Click	the	GET|POST	button	to	view	the	45	packets	that	match	this	filter.	This	is	a	great	button	to
quickly	view	requests	or	information	sent	to	a	web	server.

This	is	the	standard	process	used	to	add	a	single	Filter	Expression	button.	Next	we	will	import	a	set	of
Filter	Expression	buttons	directly	into	the	preferences	file	for	your	Wireshark101	profile.

Step	4:	Use	a	text	editor,	such	as	WordPad,	to	open	your	preferences	file	(contained	in	your
wireshark101	profile	directory).

(If	you	can't	remember	how	to	get	to	this	directory,	select	Help	|	About	Wireshark	|	Folders	and	double-
click	on	the	hyperlink	to	your	personal	configuration	folder.	Look	inside	the	profiles	folder	for	your
wireshark101	folder.)

Step	5:	Use	the	Find	feature	of	your	text	editor	to	locate	the	Filter	Expressions	area	in	your	preferences
file.	You	will	see	that	you	already	have	a	GET|POST	Filter	Expression	button	entry	as	shown	in	the	image
below.

Step	6:	Download	the	filterexpressions101.txt	file	from	www.wiresharkbook.com	and	open	this	file	in
your	text	editor.	Copy	the	contents	of	this	file	directly	under	your	new	GET|POST	entry	in	the	#######
Filter	Expressions	########	area.	Save	and	close	your	preferences	file.

Step	7:	You	must	reload	your	wireshark101	profile	to	see	your	new	Filter	Expression	buttons.	Simply
click	on	the	Profile	area	of	the	Status	Bar,	select	another	profile,	and	then	perform	the	same	steps	to	return
to	your	wireshark101	profile.

Step	8:	[Lab	Clean-up]	If	you	do	not	want	these	new	Filter	Expressions	buttons	to	remain	visible,	click
the	Edit	Preferences	button	on	the	main	toolbar	and	select	Filter	Expressions.	Uncheck	the	Filter
Expressions	listed	and	click	OK.

Remember	that	if	you	have	too	many	buttons	to	fit	in	your	display	filter	area,	Wireshark	displays	>>.
Click	on	the	double	arrows	to	expand	your	Filter	Expression	button	list.

http://www.wiresharkbook.com/

Chapter	3	Challenge
Open	challenge101-3.pcapng	and	use	your	display	filter	and	coloring	rule	skills	to	locate	traffic	based
on	addresses,	protocols	and	keywords	to	answer	these	Challenge	questions.	The	answer	key	is	located	in
Appendix	A.

You	will	practice	your	display	filter	to	locate	traffic	based	on	addresses,	protocols,	and	keywords.

Question	3-1.
How	many	frames	travel	to	or	from	80.78.246.209?

Question	3-2.
How	many	DNS	packets	are	in	this	trace	file?

Question	3-3.
How	many	frames	have	the	TCP	SYN	bit	set	to	1?

Question	3-4.
How	many	frames	contain	the	string	"set-cookie"	in	upper	case	or	lower	case?

Question	3-5.
How	many	frames	contain	a	TCP	delta	time	greater	than	1	second?

Chapter	4	Skills:	Color	and	Export	Interesting
Packets

"Wireshark	is	one	of	those	tools	that	every	engineer	is	a	bit	afraid	to	use.	It's	like	bringing	the	big
guns	on	board.	Once	you	get	familiar	with	it	and	tame	the	beast,	this	is	the	most	powerful	tool	you	will

have	on	your	networking	tool	belt."

Lionel	Gentil
iTunes	Software	Reliability	Engineer,	Apple,	Inc.

Quick	Reference:	Coloring	Rules	Interface

1.	 Enable/disable	all	coloring	rules
2.	 Launch	the	Coloring	Rules	window
3.	 Create	or	edit	coloring	rules	(double-click	on	a	coloring	rule	to	open)
4.	 Enable/disable	the	selected	coloring	rule	(line	strikeout	appears	over	rule)
5.	 Delete	the	selected	coloring	rule	(select	Clear	to	reload	default	coloring	rules)
6.	 Import/export	coloring	rules	(imported	file	name	will	be	changed	to	colorfilters)
7.	 Return	to	original	coloring	rules	set
8.	 Coloring	rule	name	(shows	current	foreground/background	color	scheme)
9.	 Coloring	rule	string	(based	on	display	filter	syntax)
10.	 Set	foreground	(text)	and	background	color	(uses	Pango	color	set)
11.	 Use	Expressions	to	create	the	coloring	rule	string

4.1.	Identify	Applied	Coloring	Rules
Wireshark	automatically	colors	packets	based	on	a	default	set	of	coloring	rules.	If	you	become	familiar
with	this	default	set	of	colors,	you	can	quickly	identify	packet	types	based	on	their	colors	instead	of
spending	time	digging	into	the	packets.

To	quickly	determine	why	a	packet	is	colored	a	certain	way,	expand	the	Frame	section	of	the	packet	and
look	at	the	Coloring	Rule	Name	and	Coloring	Rule	String	lines,	as	shown	in	Figure	82.

Figure	82.	Look	inside	the	Frame	section	of	a	packet	to	find	out	why	a	packet	is	colored	a	certain	way.	[sec–nessus101.pcapng]

Coloring	rules	are	maintained	in	a	text	file	called	colorfilters.	This	file	can	be	edited	with	a	text
editor,	but	since	it	is	loaded	when	you	open	a	profile,	you	must	switch	to	another	profile	and	return	to
the	current	profile	to	see	the	changes.

	Lab	26:	Add	a	Column	to	Display	Coloring	Rules	in	Use
Adding	a	column	to	identify	coloring	rules	is	a	great	idea	when	you	are	new	to	Wireshark	or	you	just
aren't	familiar	with	the	coloring	rules	set.

Note:	As	of	Wireshark	1.9.0	(which	is	the	development	version	leading	to	Wireshark	1.10),	this	custom
color	column	can	be	buggy	and	suddenly	not	display	the	information	properly.	Hopefully	this	issue
will	be	solved	in	a	later	version	of	Wireshark.

Step	1:	Open	http-sfgate101.pcapng.

Step	2:	Click	the	Go	To	button	 	on	the	main	toolbar	to	go	to	frame	472.

We	see	three	different	coloring	rules	applied	to	this	area	of	the	trace	file.	The	darker	blue	highlight	line
for	the	selected	packet	is	not	colored	based	on	any	coloring	rule.	If	frame	473	has	a	black	background	on
your	system,	return	to	Lab	6	and	follow	the	instructions	to	disable	your	IP,	UDP,	and	TCP	checksum
validation	settings.	To	completely	disable	that	coloring	rule,	see	the	instructions	contained	in	Disable
Individual	Coloring	Rules	.

Step	3:	Expand	the	Frame	section	in	the	Packet	Details	pane	for	frame	472.	Frame	472	matches	the
HTTP	coloring	rule	which	uses	a	green	background	and	black	foreground	(text).

Step	4:	Right-click	on	the	Coloring	Rule	Name	field	in	the	Frame	section	and	select	Apply	as	Column.
Use	this	column	when	you	want	to	quickly	list	the	coloring	rule	applied	to	each	frame.

Step	5:	[Lab	Clean-up]	Right-click	on	the	Coloring	Rule	Name	column	heading	and	select	Hide	Column.
When	you	want	to	see	this	column	again,	right-click	on	any	column	heading	and	select	Displayed	Column
|	Coloring	Rule	Name.

We	can	see	that	we	have	packets	that	matched	the	HTTP,	Bad	TCP,	and	UDP	coloring	rules	at	this	point	in
the	trace	file.	Learning	the	default	set	of	coloring	rules	helps	you	quickly	understand	communications
behaviors.

4.2.	Turn	Off	the	Checksum	Error	Coloring	Rule
If	you	have	TCP,	UDP,	and	IP	checksum	validation	preference	settings	enabled	and	you	are	capturing	on	a
host	that	uses	task	offload,	the	Checksum	Error	coloring	rule	will	create	false	positive	coloring	on	your
trace	file.	When	a	system	supports	task	offloading,	valid	checksums	are	applied	by	the	network	interface
card	before	the	frame	is	sent	on	the	network.	Wireshark	captures	a	copy	of	the	packets	before	that	valid
checksum	is	appended	to	the	frames.	Consider	disabling	the	Checksum	Errors	coloring	rule	or	disabling
checksum	validation	(as	we	did	in	Lab	6).

Disable	Individual	Coloring	Rules
To	disable	one	or	more	coloring	rules,	open	the	Coloring	Rules	window	by	clicking	the	Coloring	Rules
button	on	the	main	toolbar.	Click	on	a	coloring	rule	and	then	click	the	Disable	button.	The	coloring	rule	is
displayed	with	a	line	through	it,	as	shown	in	Figure	83.

Figure	83.	Select	the	Checksum	Errors	coloring	rule	and	click	the	Disable	button	to	remove	false	positives	caused	by	task
offloading.

Disable	All	Packet	Coloring
If	you	just	can't	stand	working	with	the	coloring	rules	on,	you	can	toggle	all	coloring	on	or	off	using	View	|
Colorize	Packet	List	or	click	the	Colorize	Packet	List	button	on	the	main	toolbar.

One	of	the	most	irritating	coloring	rules	is	the	Checksum	Errors	coloring	rule.	Prior	to	Wireshark
version	1.8.x,	IP,	UDP,	and	TCP	checksum	validations	were	enabled	in	the	respective	protocols'
preference	settings.	Since	lots	of	machines	use	task	offloading	(with	checksum	calculations	offloaded
to	the	network	card),	it	was	common	to	find	all	outbound	packets	from	these	systems	colored	with	the
"Bad	Checksum"	coloring	rule	although	the	adapter	applied	a	perfectly	good	checksum	to	the	frame
before	sending	it	onto	the	network.
If	you	updated	Wireshark,	you	may	have	retrained	earlier	checksum	validation	settings	and	you	might
still	see	Bad	Checksum	coloring	in	your	trace	file.	To	remove	these	inaccurate	indications,	the	best
option	is	to	turn	off	the	checksum	validation	setting	for	IP,	UDP,	and	TCP	using	Edit	|	Preferences	|
(+)	Protocols	and	disabling	the	setting	for	IP,	UDP,	and	TCP.	Otherwise,	you	can	simply	disable	the
Checksum	Errors	coloring	rule,	as	shown	in	Figure	83.	If	you	just	disable	the	coloring	rule,	Wireshark
may	still	indicate	that	you	have	checksum	errors	inside	the	frame,	but	the	Bad	Checksum	coloring	rule
will	not	be	applied	to	the	packets	in	the	Packet	List	pane.

4.3.	Build	a	Coloring	Rule	to	Highlight	Delays
When	users	complain	about	slow	network	performance,	look	for	delays	between	packets	in	their
communications.	You	can	easily	create	a	coloring	rule	to	call	your	attention	to	these	delays	in	UDP-based
or	TCP-based	communications.

Create	a	Coloring	Rule	from	Scratch
In	Use	Filters	to	Spot	Communication	Delays,	you	learned	how	to	filter	on	delays	in	a	trace	file.	You	can
use	a	similar	technique	to	create	a	single	coloring	rule	to	detect	packets	that	have	a	high	delta	time.

Since	coloring	rule	strings	use	display	filter	syntax,	you	can	easily	turn	any	of	your	display	filters	into
coloring	rules	by	copying	the	display	filter	into	the	coloring	rule	string	area.

Select	View	|	Coloring	Rules	|	New	and	enter	the	name	T-Delays.	In	the	String	area,	type
frame.time_delta	>	1	||	tcp.time_delta	>	1,	as	shown	in	Figure	84.

Figure	84.	Enter	the	coloring	rule	name	and	string	and	then	set	the	background	color.

Now	it's	time	to	set	the	foreground	(text)	and	background	color	for	your	coloring	rule.

The	color	names	used	by	Wireshark's	color	picker	come	from	the	Pango	library.	The	list	of	available
color	names	can	be	found	at	git.gnome.org/browse/pango/tree/pango/pango-color-table.h.	That	file	is
generated	from	the	"rgb.txt"	file	that	ships	with	standard	X11	distributions[38].	A	short	version	of	the	color
names	list,	along	with	color	samples,	can	be	found	at	en.wikipedia.org/wiki/X11_color_names.	Note	that
many	of	the	colors	have	the	numbers	1	through	4	affixed	to	the	end	of	the	name	to	offer	a	darker	shade	of
the	color.

Click	the	Background	Color	button,	type	orange	in	the	Color	name	area,	as	shown	in	Figure	85,	and	then
press	Enter.	Wireshark	will	automatically	change	the	word	"orange"	to	its	hex	value,	#FFA500.	Click
OK.

Figure	85.	Wireshark	recognizes	hundreds	of	color	names,	which	is	the	easiest	way	to	assign	colors.

Wireshark	always	shows	the	foreground	and	background	coloring	scheme	in	the	Name	field	so	you	can
ensure	it	looks	just	the	way	you	want,	as	shown	in	Figure	86	(color	is	visible	in	the	eBook	version).

http://git.gnome.org/browse/pango/tree/pango/pango-color-table.h
http://en.wikipedia.org/wiki/X11_color_names

Figure	86.	Wireshark	applies	your	foreground	and	background	color	scheme	to	the	Name	field.

Your	new	coloring	rule	will	automatically	be	placed	at	the	top	of	the	Coloring	Rules	set.	Placement	of
coloring	rules	is	important	as	packets	are	processed	in	order	from	top	to	bottom	through	the	coloring	rules
list.	Put	your	most	important	coloring	rules	at	the	top	of	the	list.

Use	the	Right-Click	Method	to	Create	a	Coloring	Rule
The	fastest	way	to	create	a	new	coloring	rule	is	to	select	the	field	of	interest	in	the	Packet	Details	pane,
right-click	and	select	Colorize	with	Filter	|	New	Coloring	Rule.

Plan	your	coloring	and	naming	scheme	in	advance.	For	example,	if	a	color	highlights	a	performance
problem,	affix	"T-"	(for	"troubleshooting")	to	the	front	of	the	coloring	rule	name	and	make	all	your
troubleshooting	coloring	rule	backgrounds	orange.	Affix	"S-"	(for	"security")	to	the	front	of	security
coloring	rules	and	set	the	background	color	of	these	rules	to	red.	This	will	help	you	quickly	classify
the	traffic	just	based	on	the	color	displayed.
The	example	shown	below	includes	one	security	coloring	rule	prefaced	with	"S-"	and	two
troubleshooting	coloring	rules	prefaced	by	"T-".

	Lab	27:	Build	a	Coloring	Rule	to	Highlight	FTP	User	Names,
Passwords,	and	More
In	this	lab	you	will	create	a	coloring	rule	to	call	your	attention	to	FTP	request	arguments,	including	those
associated	with	USER,	PASS,	TYPE,	SIZE,	MDTM,	RETR,	and	CWD	commands.	We	will	use	ftp-
crack101.pcapng	again.

Step	1:	Open	ftp-crack101.pcapng.	We	began	capturing	in	the	middle	of	various	FTP	communications.	In
frame	11	we	can	see	"Request:	PASS	merlin"	in	the	Info	column	of	the	Packet	List	pane.

Step	2:	In	the	Packet	Details	pane	of	frame	11,	fully	expand	the	File	Transfer	Protocol	(FTP)	line.	There
are	two	sections:	Request	command	and	Request	arg(ument).

Step	3:	Right-click	on	the	Request	arg	line	and	select	Colorize	with	Filter	|	New	Coloring	Rule,	as
shown	below.

Step	4:	In	the	Edit	Color	Filter	window,	name	your	coloring	rule	"S-FTP	Arguments.[39]"	Edit	the	String
to	just	ftp.request.arg.

Click	the	Background	Color	button	and	enter	red	in	the	Color	name	area.	Click	OK	to	save	your
background	color	setting.	Click	the	Foreground	Color	button	and	enter	white	in	the	Color	name	area.
Click	OK	to	save	your	foreground	color	setting.

Click	OK	to	close	the	Edit	Color	Filter	window	and	OK	to	close	the	Coloring	Rules	window.

Step	5:	Scroll	through	this	trace	file	to	identify	the	other	frames	that	match	your	new	coloring	rule.	You
should	easily	be	able	to	spot	FTP	user	names	and	passwords	that	were	captured	in	this	trace	file.

Use	the	right-click	method	to	quickly	make	coloring	rules.	At	times	you	may	just	right-click	and	accept	the
filter	string	"as	is"—other	times	you	might	decide	to	edit	the	string	to	be	less	or	more	specific.

4.4.	Quickly	Colorize	a	Single	Conversation
It	can	be	confusing	to	analyze	traffic	when	your	network	communications	contain	numerous	intertwined
conversations.	You	can	use	coloring	to	visibly	separate	the	conversations	in	the	Packet	List	pane	to
differentiate	them	as	you	scroll	through	a	trace	file.

Right-Click	to	Temporarily	Colorize	a	Conversation
To	temporarily	colorize	a	TCP	conversation,	right-click	on	any	conversation	in	the	Packet	List	pane	and
select	Colorize	Conversation	|	TCP	|	Color	1,	as	shown	in	Figure	87.	Wireshark	offers	ten	temporary
colors.	Some	of	the	colors	are	quite	similar	and	may	be	difficult	to	distinguish	from	each	other.

Temporary	colors	are	retained	until	you	change	to	another	profile,	restart	Wireshark,	or	manually	remove
them.

Figure	87.	Right-click	on	a	conversation	in	the	Packet	List	pane,	select	the	type	of	conversation,	and	choose	a	temporary	color.
[http-jezebel101.pcapng]

In	Figure	88,	we	applied	a	temporary	coloring	rule	to	the	TCP	conversation	that	was	established	to
download	a	site	icon	file	(favicon.ico).

Figure	88.	Coloring	conversations	helps	distinguish	them	in	a	trace	file.	[http-jezebel101.pcapng]

Remove	Temporary	Coloring
Although	we	refer	to	these	coloring	rules	as	"temporary,"	if	you	apply	a	temporary	coloring	rule	to	a
conversation,	close	the	trace	file,	and	open	it	again.	You	will	notice	the	color	is	still	in	place.

Temporary	coloring	rules	are	in	effect	until	you	switch	profiles,	close	Wireshark	or	remove	them.

To	remove	all	your	temporary	color	settings,	select	View	|	Reset	Coloring	1-10.

	Lab	28:	Create	Temporary	Conversation	Coloring	Rules
In	this	lab,	you	will	apply	three	temporary	coloring	rules	to	differentiate	TCP	conversations.	When	you
scroll	through	the	trace	file,	you	will	be	able	to	easily	see	when	an	earlier	conversation	begins	to	surface.

Step	1:	Open	http-browse101d.pcapng.

Step	2:	Frame	1	is	a	TCP	handshake	packet	(SYN).	Right-click	on	frame	1	in	the	Packet	List	pane	and
select	Colorize	Conversation	|	TCP	|	Color	1.

Step	3:	Scroll	down	until	you	see	the	next	SYN	packet—frame	12.	Right-click	on	frame	12	in	the	Packet
List	pane	and	select	Colorize	Conversation	|	TCP	|	Color	2.

Step	4:	Scroll	down	until	you	see	the	next	SYN	packet—frame	61.	Right-click	on	frame	61	in	the	Packet
List	pane	and	select	Colorize	Conversation	|	TCP	|	Color	3.

Step	5:	Now	scroll	through	the	trace	file	to	see	if	these	three	conversations	appear	later.	When	you	get	to
frame	138,	you	will	see	conversation	3	appearing	again.

Step	6:	[Lab	Clean-up]	Select	View	|	Reset	Coloring	1-10	to	remove	your	temporary	coloring	rules.

This	temporary	coloring	is	very	useful	when	analyzing	applications	that	require	many	connections—think
Microsoft's	SharePoint!	It's	easy	to	differentiate	the	various	processes	taking	place	on	the	network	when
we	colorize	different	conversations.

4.5.	Export	Packets	that	Interest	You
When	you	work	with	a	large	trace	file	that	has	numerous	communication	types,	consider	applying	filters
based	on	conversations	or	protocols	and	exporting	the	packets	to	a	new	trace	file.	You	will	have	fewer
packets	to	deal	with	and	your	statistics	will	only	apply	to	the	exported	packets.

You	can	easily	export	displayed	packets,	marked	packets,	or	a	range	of	packets.

Let's	say	you	applied	a	display	filter	for	all	traffic	to	or	from	TCP	port	80	(tcp.port==80).	To	export	these
packets	to	a	new	trace	file,	select	File	|	Export	Specified	Packets,	as	shown	in	Figure	89.

Figure	89.	Use	File	|	Export	Specified	Packets	to	save	the	captured	packets,	displayed	packets,	marked	packets,	or	a	range	of
packets.

If	you	want	to	export	packets	that	do	not	match	neatly	in	a	display	filter,	consider	marking	the	packets
before	selecting	File	|	Export	Specified	Packets.	Right-click	on	each	packet	of	interest	in	the	Packet	List
pane	and	select	Mark	Packet	(toggle).	You	must	mark	each	packet	separately.

By	default,	marked	packets	appear	with	a	black	background	and	white	foreground.	When	you	select	File	|
Export	Specified	Packets,	choose	either	Marked	packets	or	First	to	last	marked.

If	some	of	your	marked	packets	are	not	visible	due	to	a	display	filter,	you	can	still	export	them	by	clicking
the	Captured	radio	button.

Packet	marking	is	only	temporary.	When	you	open	the	exported	packets	in	your	new	trace	file,	the	packets
will	not	be	marked.

Prior	to	Wireshark	1.8,	we	used	File	|	Save	As	to	save	a	subset	of	packets.	Now	Save	As	is	only	used	to
save	a	copy	of	the	entire	trace	file	or	to	save	the	trace	file	into	another	format.	We	now	must	select

File	|	Export	Specified	Packets	to	save	a	subset	of	a	trace	file.

	Lab	29:	Export	a	Single	TCP	Conversation
When	you	are	focused	on	a	specific	application	or	a	specific	file	download,	it	helps	to	extract
conversations	into	separate	trace	files.	In	this	lab,	you	will	create	and	extract	a	new	trace	file	after
locating	traffic	from	an	executable	file	download	process.

Step	1:	Open	http-misctraffic101.pcapng.

Step	2:	Using	your	display	filtering	techniques,	filter	on	a	frame	that	contains	".exe"	in	the	HTTP	Request
URI	field	(http.request.uri	contains	".exe").	Only	one	frame	should	match	your	filter—frame	211,	as
shown	below.

It	appears	someone	is	downloading	Metasploit,	a	popular	penetration	testing	program.

Step	3:	Right-click	on	frame	211	in	the	Packet	List	pane.	Select	Conversation	Filter	|	TCP	to	display
this	single	TCP	conversation.	The	Status	Bar	should	now	indicate	that	475	packets	match	your	filter.

Step	4:	To	save	this	conversation	in	a	separate	trace	file,	select	File	|	Export	Specified	Packets.	Enter
the	file	name	exportexe.pcapng	and	ensure	the	Displayed	radio	button	is	selected	before	clicking	Save.

Step	5:	[Lab	Clean-up]	Click	the	Clear	button	to	remove	the	conversation	display	filter	before	you
continue.

You've	now	created	a	new	trace	file	that	contains	a	single	conversation	from	the	original	trace	file.

Working	with	a	single	conversation	is	much	easier	than	wading	through	thousands	of	conversations	in	a
trace	file.

4.6.	Export	Packet	Details
If	you	are	going	to	write	a	report	about	network	communications	or	packet	contents,	it	would	be	nice	to
show	some	packets	along	with	your	analysis	findings.	It's	easy	to	export	packet	details,	but	be	careful	you
don't	get	too	much	information	during	the	process.

Export	Packet	Dissections
Select	File	|	Export	Packet	Dissections	to	export	packet	details,	as	shown	in	Figure	90.	There	are	six
different	export	options,	but	the	most	commonly	used	export	types	are	plain	text	and	CSV	(comma
separated	value)	formats.

Figure	90.	To	include	packet	details	in	a	report,	select	File	|	Export	Packet	Dissections.	[http–browse101.pcapng]

Select	the	plain	text	format	if	you	are	going	to	include	packet	contents	or	summary	information	in	a	report.

Select	CSV	format	to	import	packet	information	into	another	program	(such	as	a	spreadsheet	program)	for
further	manipulation	and	analysis.

Define	What	should	be	Exported
There	are	additional	options	that	can	be	defined.	You	can	choose	to	export	specific	packets	based	on	your
filters	or	marked	packets.	You	can	also	define	what	packet	information	should	be	included	in	the	output
process.	As	shown	in	Figure	91,	you	can	export	the	packet	summary	line	(from	the	Packet	List	pane,
including	any	columns	you've	added),	packet	details	(choose	all	expanded,	as	displayed	in	the	Packet
Details	pane,	or	all	collapsed),	or	the	packet	bytes	(output	with	hex	and	ASCII	details).

You	can	also	select	to	have	each	packet	on	a	different	page.	Be	careful—you	can	run	through	reams	of
paper	this	way.

Practice	exporting	packet	information	to	figure	out	which	format	would	look	best	in	a	report.

Figure	91.	Decide	how	much	packet	detail	you	need	when	exporting	packet	dissections.

Sample	Text	Output
The	output	below	was	created	by	exporting	a	single	packet	in	plain	text	format	(.txt)	using	the	packet
details	as	displayed.

Frame	4:	321	bytes	on	wire	(2568	bits),	321	bytes	captured	(2568	bits)	on	interface	0
Ethernet	II,	Src:	AmbitMic_0b:b9:44	(00:d0:59:0b:b9:44),	Dst:	LinksysG_df:80:c7	(00:04:5a:df:80:c7)
Internet	Protocol	Version	4,	Src:	192.168.1.182	(192.168.1.182),	Dst:	161.58.73.170	(161.58.73.170)
Transmission	Control	Protocol,	Src	Port:	cplscrambler-al	(1088),	Dst	Port:	http	(80),	Seq:	1,	Ack:	1,
Len:	267
Hypertext	Transfer	Protocol
				GET	/	HTTP/1.1\r\n
				Accept:	*/*\r\n
				Accept-Language:	en-us\r\n
				Accept-Encoding:	gzip,	deflate\r\n
				If-Modified-Since:	Sat,	16	Mar	2002	07:16:37	GMT;	length=69556\r\n
				User-Agent:	Mozilla/4.0	(compatible;	MSIE	5.5;	Windows	NT	5.0)\r\n
				Host:	www.packet-level.com\r\n
				Connection:	Keep-Alive\r\n
				\r\n
				[Full	request	URI:	http://www.packet-level.com/]

Sample	CSV	Output
Exporting	to	CSV	format	allows	you	to	manipulate	the	information	in	another	tool,	such	as	Excel.	The
output	below	was	created	by	exporting	the	packet	summary	line	of	all	the	packets	of	a	trace	file	in	comma
separated	value	format	(.csv).

"No.","Time","Source","Destination","Protocol","Length","Info"
"2","0.251957000","24.6.173.220","75.75.75.75","DNS","77","Standard	query	0x5451		A
www.chappellu.com"
"3","1.252833000","24.6.173.220","75.75.76.76","DNS","77","Standard	query	0x5451		A
www.chappellu.com"
"4","1.253087000","24.6.173.220","75.75.75.75","DNS","77","Standard	query	0x5451		A
www.chappellu.com"
"5","2.252841000","24.6.173.220","75.75.76.76","DNS","77","Standard	query	0x5451		A
www.chappellu.com"
"6","2.252903000","24.6.173.220","75.75.75.75","DNS","77","Standard	query	0x5451		A
www.chappellu.com"
"8","4.252909000","24.6.173.220","75.75.75.75","DNS","77","Standard	query	0x5451		A
www.chappellu.com"
"9","4.252977000","24.6.173.220","75.75.76.76","DNS","77","Standard	query	0x5451		A
www.chappellu.com"
"10","8.253355000","24.6.173.220","75.75.75.75","DNS","77","Standard	query	0x5451		A
www.chappellu.com"
"11","8.253600000","24.6.173.220","75.75.76.76","DNS","77","Standard	query	0x5451		A
www.chappellu.com"
"12","8.298331000","75.75.75.75","24.6.173.220","DNS","93","Standard	query	response	0x5451		A
198.66.239.146"
"24","8.449268000","24.6.173.220","75.75.75.75","DNS","84","Standard	query	0xc16e		A	www.google-
analytics.com"
"25","8.465908000","75.75.75.75","24.6.173.220","DNS","304","Standard	query	response	0xc16e	
CNAME	www-google-analytics.l.google.com	A	74.125.224.128	A	74.125.224.130	A	74.125.224.133	A
74.125.224.129	A	74.125.224.142	A	74.125.224.131	A	74.125.224.135	A	74.125.224.132	A
74.125.224.137	A	74.125.224.134	A	74.125.224.136"
"26","8.466750000","24.6.173.220","75.75.75.75","DNS","84","Standard	query	0x9111		AAAA
www.google-analytics.com"
"27","8.478874000","75.75.75.75","24.6.173.220","DNS","156","Standard	query	response	0x9111	
CNAME	www-google-analytics.l.google.com	AAAA	2001:4860:4001:803::1006"

Before	you	export	the	Packet	Summary	information,	right-click	on	any	column	heading	and	select
Displayed	Columns	to	check	for	hidden	columns.	Hidden	columns	will	automatically	be	included	in
the	exported	file.	You	might	like	this	behavior	because	you	can	export	large	amounts	of	column	data
without	having	all	the	columns	visible	as	you	work.	Keep	in	mind,	however,	that	more	columns	means
more	work	for	Wireshark	when	it	opens	and	displays	files,	applies	display	filters,	and	sets	coloring
rules.	If	you	don't	want	these	columns	exported,	you	must	remove	them.	The	fastest	way	to	remove	a
large	number	of	unwanted	columns	is	through	Edit	|	Preferences	|	Columns.

	Lab	30:	Export	a	List	of	HTTP	Host	Field	Values	from	a	Trace	File
In	this	lab,	you	will	alter	the	Packet	List	pane	to	display	the	HTTP	Host	field	before	exporting	information
to	CSV	format.

Step	1:	Open	http-au101b.pcapng.

Step	2:	In	Lab	15	you	created	an	HTTP	Host	column.	The	column	may	be	hidden	right	now.	Right-click
on	any	column	heading	in	the	Packet	List	pane	and	select	Displayed	Column	|	Host	(http.host).

If	you	did	not	retain	your	HTTP	Host	column	in	Lab	15,	right-click	the	Hypertext	Transfer	Protocol
section	in	the	Packet	Details	pane	of	frame	8	and	select	Expand	Subtrees.	Right-click	on	the	Host	field
and	select	Apply	as	Column.	You	may	need	to	adjust	the	new	Host	column	width	to	see	the	full	host
name.

Step	3:	Enter	http.host	as	a	display	filter	and	click	Apply.	Only	packets	that	contain	this	field	are
displayed.	Those	are	the	only	packets	we	want	to	export	in	this	lab.

Note	that	all	Packet	List	pane	column	information	(even	information	in	hidden	columns)	will	be	exported.
Keep	this	in	mind	before	adding	and	hiding	lots	of	columns	that	you	never	use.	Instead	of	hiding	these
columns,	use	Remove	Column	to	delete	unwanted	columns.

Step	4:	Select	File	|	Export	Specified	Packets	|	as	"CSV"	(Comma	Separated	Values	packet
summary)	file...

Step	5:	Displayed	is	already	selected	in	the	Export	File	window.

Enter	hostinformation.csv	in	the	File	Name	field	and	uncheck	Packet	Details.	Click	Save.

Step	6:	Open	your	file	in	a	spreadsheet	program	(such	as	Excel)	and	sort	on	the	Host	column	to	view	a
list	of	all	HTTP	Host	field	values	seen	in	the	trace	file.

Step	7:	[Lab	Clean-up]	Return	to	Wireshark	and	click	the	Clear	button	to	remove	your	http.host	filter.
Right-click	on	the	Host	column	heading	and	select	Hide	Column.

There	are	many	charts	and	graphs	that	cannot	be	created	directly	in	Wireshark.	Exporting	the	desired
fields	to	a	third-party	program	opens	up	numerous	options	for	visualizing	the	traffic.

In	Chapter	8,	you	will	learn	how	to	export	the	HTTP	hosts	list	quickly	using	the	command-line	tool
Tshark.

Chapter	4	Challenge
Open	challenge101-4.pcapng	and	use	your	packet	coloring	and	export	skills	in	this	chapter	to	answer
these	Challenge	questions.	The	answer	key	is	located	in	Appendix	A.

Question	4-1.
What	coloring	rule	does	frame	170	match?

Question	4-2.
Temporarily	color	TCP	stream	5	with	a	light	blue	background	and	apply	a	filter	on	this	traffic.	How	many
packets	match	your	filter?

Question	4-3.
Create	and	apply	a	coloring	rule	for	TCP	delta	delays	greater	than	100	seconds.	How	many	frames	match
this	coloring	rule?

Question	4-4.
Export	this	filtered	TCP	delta	information	in	CSV	format.	Using	a	spreadsheet	program,	what	is	the
average	TCP	delta	time?

Chapter	5	Skills:	Build	and	Interpret	Tables	and
Graphs

"When	people	ask	me	why	they	should	use	Wireshark,	even	when	they	don't	have	much	network
protocol	knowledge,	I	tell	them	to	compare	Wireshark	to	an	X-ray	image.	Anyone	who	sees	a	pair	of
scissors	on	an	X-ray	image	of	a	person's	stomach	can	tell	you	what's	wrong.	There	shouldn't	be	any

scissors	there.	
In	Wireshark,	there	are	also	things	that	stand	out,	like	not	getting	a	DNS	response	or	seeing	a	TCP
SYN	followed	by	a	TCP	RST.	By	looking	more	and	more	at	network	traces	(and	reading	about	the

network	protocols),	you	will	be	able	to	extract	more	information	from	the	packets.	Just	like	a	doctor
who	knows	what	certain	tissues	should	look	like,	you	can	extract	more	information	from	an	X-ray

image	than	the	novice	eye."

Sake	Blok
Wireshark	Core	Developer	
and	Founder,	SYN-bit

Quick	Reference:	IO	Graph	Interface

1.	 Graph	area	(X	axis)—The	X	axis	defaults	to	seconds;	scroll	right/left	if	necessary
2.	 Graph	area	(Y	axis)—This	graph	is	set	to	a	logarithmic	scale[40]
3.	 Graph	buttons—Click	these	buttons	to	enable/disable	graph	lines
4.	 Filter	area—Recall	saved	display	filters	with	the	Filter	button	or	use	auto-complete	when	typing	in

filters	(error	detection	is	in	use)
5.	 Graph	style—Select	line,	impulse,	fbar	(floating	bar),	and	dot	formats
6.	 X	Axis—Adjust	the	tick	interval	to	alter	the	width	of	the	graph	or	enable/disable	the	Time	of	Day

format	for	the	X	axis
7.	 Y	Axis—Change	Wireshark's	default	Y	interval	setting;	access	the	Advanced	IO	Graph;	enable

smoothing
8.	 Copy—Buffer	the	interval	start	and	graph	plot	points	in	CSV	format
9.	 Save—Save	the	basic	graph	area	in	.png,	.bmp,	.jpeg,	or	.tiff	format

Graph	1	is	in	the	foreground.	If	you	are	graphing	multiple	overlapping	elements,	watch	for	elements
(especially	fbar	elements)	hiding	other	graph	elements.

5.1.	Find	Out	Who's	Talking	to	Whom	on	the
Network
Whether	you	are	capturing	live	traffic	or	are	opening	a	saved	trace	file,	you	should	always	check	to	see
what	hosts	are	communicating	on	the	network.

There	are	two	statistics	windows	available	to	determine	what	hosts	are	talking	on	the	network:
Conversations	and	Endpoints.

Check	Out	Network	Conversations
We	opened	the	Conversations	window	in	Filter	on	a	Conversation	from	Wireshark	Statistics.	Select
Statistics	|	Conversations	and	expand	the	window	to	see	all	the	columns,	as	shown	in	Figure	92	and
Figure	93.

In	Figure	92,	we	selected	the	TCP	tab	and	sorted	the	conversations	based	on	the	Bytes	column.

Figure	92.	Select	Statistics	|	Conversations	|	TCP	to	see	which	hosts	are	communicating	via	TCP.	[http–espn101.pcapng]

Figure	93.	Expand	the	Conversations	window	to	see	the	relative	start	time	and	duration	of	the	conversations.	[http–espn101.pcapng]

Wireshark	refers	to	its	services	file	to	replace	port	numbers	with	application	names.	Uncheck	the	Name
resolution	option	to	turn	off	this	resolution.

If	you	expand	the	Conversations	window	or	scroll	to	the	right,	you	will	see	the	Relative	Start	(Rel	Start)
and	Duration	columns.	The	Relative	Start	time	indicates	when	the	conversation	started	in	the	trace	file.
The	Duration	column	indicates	how	much	time	passed	from	the	first	packet	of	the	conversation	to	the	last
packet	of	the	conversation	seen	in	the	trace	file.

If	you	have	a	filter	in	the	display	filter	area,	you	can	apply	that	filter	to	the	Conversations	window	by
checking	the	box	in	front	of	Limit	to	display	filter.

Click	Follow	Stream	(available	under	the	TCP	and	UDP	tabs)	to	reassemble	the	selected	conversation.
This	often	makes	it	easier	to	understand	communication	between	hosts.

Quickly	Filter	on	Conversations
To	filter	on	any	conversation,	right-click	on	a	conversation	and	select	either	Apply	as	Filter	or	Prepare	a
Filter.	Unlike	standard	display	filters,	when	filtering	on	conversations	you	can	specify	the	direction	you
are	interested	in,	as	shown	in	Figure	94.

"A"	represents	any	column	that	has	the	"A"	designation	and	"B"	represents	any	column	that	has	the	"B"
designation.	For	example,	if	you	click	on	the	IPv4	tab,	you	can	see	Address	A	and	Address	B.	If	you	click
on	the	TCP	tab	or	UDP	tab,	you	can	see	Address	A,	Port	A	and	Address	B,	Port	B.

Figure	94.	Right-click	on	any	conversation	to	apply	a	filter,	prepare	a	filter,	find	a	packet	in	the	conversation,	or	to	build	a	coloring
rule	for	the	conversation.	[http–espn101.pcapng]

Remember	to	expand	the	Conversations	Window.	There	are	some	very	important	columns	(relative
time,	duration,	and	bits	per	second)	hidden	from	view	on	the	right	side	when	this	window	opens.

5.2.	Locate	the	Top	Talkers
When	you	are	trying	to	determine	why	a	network	or	link	is	saturated	with	traffic,	take	a	look	at	which
hosts	are	using	the	most	bandwidth	(based	on	bytes,	not	packets).

Sort	to	Find	the	Most	Active	Conversation
To	determine	which	IPv4	or	IPv6	conversations	are	using	up	the	most	bandwidth,	select	Statistics	|
Conversations	|	IPv4	or	IPv6	and	click	twice	on	the	Bytes	column	to	sort	from	high	to	low,	as	shown	in
Figure	95.

Figure	95.	Sort	on	the	Bytes	column	under	the	IPv4	tab	or	IPv6	tab	to	identify	the	most	active	conversations	in	the	trace	file.	[http–
espn101.pcapng]

Right-click	on	the	top	conversation	line	to	apply	or	prepare	a	filter	based	on	these	top	talkers,	find	a
packet	in	the	conversation,	or	build	a	coloring	rule	for	the	conversation.

Sort	to	Find	the	Most	Active	Host
We	need	to	go	to	another	statistics	window	to	find	the	top	single	talker	on	the	network.	Close	the
Conversation	window,	select	Statistics	|	Endpoints	|	IPv4	or	IPv6,	and	click	twice	on	the	Bytes	column
to	sort	from	high	to	low,	as	shown	in	Figure	96.	Since	the	top	talker	is	generally	based	on	bandwidth
usage,	the	Bytes	column	is	the	best	column	to	use.	If	you	are	interested	in	the	most	active	transmitter	on
the	network,	sort	the	Tx	Bytes	column	from	high	to	low.

Figure	96.	Sort	from	high	to	low	on	the	Bytes	column	to	find	the	top	talker	in	the	trace	file.	[http–espn101.pcapng]

You	will	see	a	Map	button	in	the	IPv4	and	IPv6	sections	of	the	Endpoints	window.	This	button	can	be
used	to	plot	the	IP	addresses	on	a	map	of	the	world.	This	is	called	the	GeoIP	feature.	You	will	get	a
chance	to	enable/disable	this	feature	and	use	this	skill	in	Lab	32.

	Lab	31:	Filter	on	the	Most	Active	TCP	Conversation
Pulling	out	the	most	active	conversation	is	a	common	network	analysis	task	when	trace	files	contain	tens
or	even	hundreds	of	conversations.

Step	1:	Open	http-misctraffic101.pcapng.

Step	2:	Select	Statistics	|	Conversations.	Click	the	Ethernet	tab	to	notice	there	is	only	one	pair	of	hosts
communicating	on	the	local	network.	The	MAC	address	listed	as	"Cadant"	is	the	local	router.	The
"Flextron"	host	is	the	client	from	which	we	captured	traffic.

Step	3:	Click	on	the	IPv4	tab	to	examine	the	two	IPv4	conversations	in	this	trace	file.	Based	on	the	bytes
count,	the	most	active	IPv4	conversation	is	between	24.6.181.160	and	107.6.133.250.

Step	4:	Click	the	TCP	tab	to	identify	the	most	active	TCP	conversation.	Click	twice	on	the	Bytes	column
heading	to	sort	from	high	to	low.

We	can	see	the	most	active	TCP	conversation	is	between	24.6.181.160	on	a	port	listed	as	"dellpwrappks"
and	107.6.133.250	on	a	port	listed	as	"http."

Notice	that	clients	use	a	temporary	port	number	when	they	communicate	with	an	HTTP	server.	In	this
case,	the	client	has	selected	port	1266,	which	Wireshark	lists	as	dellpwrappks	in	its	services	file.	In	this
case,	however,	this	is	the	port	the	client	is	using	right	now	for	its	HTTP	communication.	It	has	nothing	to
do	with	dellpwrappks.

If	you'd	prefer	to	see	port	numbers	rather	than	resolved	port	names,	uncheck	the	Name	resolution
checkbox	on	this	screen.

	

Step	5:	Right-click	on	the	most	active	TCP	conversation	and	select	Apply	as	Filter	|	Selected	|	A	<—>
B.	Wireshark	automatically	creates	and	applies	a	display	filter	for	this	TCP	conversation.

The	result	of	this	filter	is	shown	below.	There	are	475	packets	that	match	this	filter.

Step	6:	[Lab	Clean-up]	Click	the	Clear	button	to	remove	your	display	filter	before	continuing.	Toggle	to
the	Conversation	window	and	click	Close.

You	can	add	other	conversations	to	your	filter	easily	by	returning	to	the	Conversations	window,	right-
clicking	on	another	TCP	conversation	and	selecting	Apply	as	Filter	|	...or	Selected.	Spend	some	time
becoming	efficient	using	this	method	for	conversation	filtering.	You	can	also	click	the	Copy	button	in	the
Conversations	window	to	buffer	the	current	Conversations	view	in	CSV	format.	You	can	then	paste	the
information	into	a	text	file,	name	the	file	with	a	.csv	extension	and	open	it	in	a	spreadsheet	program	to
further	analyze	the	information.

	Lab	32:	Set	up	GeoIP	to	Map	Targets	Globally
Wireshark	can	use	the	MaxMind	GeoLite	database	files	to	map	IPv4	and	IPv6	addresses	on	a	map	of	the
Earth.	In	this	lab,	you	will	configure	Wireshark	to	use	this	database	and	map	IP	addresses	seen	in	a	trace
file.

Step	1:	Open	http-browse101c.pcapng.

Step	2:	Visit	www.maxmind.com	and	download	the	free	GeoLite	database	files	(geo*.dat	files).	These
files	can	be	found	by	clicking	the	link	to	the	GeoIP	databases	and	services	link	and	looking	for	the
GeoLite	database	files	link[41].

Step	3:	To	enable	the	GeoIP	feature,	create	a	directory	called	maxmind	on	your	drive	and	place	the
maxmind	files	in	that	directory.	Now	select	Edit	|	Preferences	|	Name	Resolution	and	click	the	GeoIP
database	directories	Edit	button.

Click	New	and	point	to	your	maxmind	directory.	Continue	to	click	OK	until	you	have	closed	the	GeoIP
database	paths	windows	and	the	Preferences	window.

Note:	You	may	need	to	restart	Wireshark	in	order	to	view	GeoIP	information.

Step	4:	Select	Statistics	|	Endpoints	and	click	on	the	IPv4	tab.	You	should	see	information	in	the
Country,	City,	Latitude,	and	Longitude	columns.

Step	5:	Click	the	Map	button.	Wireshark	will	launch	a	global	view	in	your	browser	with	the	known	IP
address	points	plotted	on	the	map.	This	process	uses	ActiveX,	which	may	require	that	you	allow	the
ActiveX	process	to	run.	Click	on	any	of	the	plot	points	find	more	information	about	the	IP	address.

Step	6:	Close	the	browser	window	when	you	are	finished.	Spend	some	time	capturing	your	own	traffic
and	mapping	it	globally.	Learn	where	your	packets	are	traveling.

http://www.maxmind.com/

GeoIP	mapping	is	very	helpful	when	you	are	concerned	about	the	external	destination	of	your	traffic.	For
example,	if	you	work	at	a	facility	that	should	not	have	outbound	traffic	leaving	the	country,	GeoIP	maps
can	help	identify	unwanted	external	targets.

5.3.	List	Applications	Seen	on	the	Network
If	you	are	concerned	about	the	type	of	traffic	flowing	over	a	network	(perhaps	you	suspect	a	host	is
compromised),	use	Wireshark	to	characterize	TCP-	and	UDP-based	applications.

View	the	Protocol	Hierarchy
Select	Statistics	|	Protocol	Hierarchy	to	determine	which	protocols	and	applications	are	in	a	trace	file.
In	Figure	97,	we	opened	http-browse101b.pcapng.	We	can	see	this	trace	file	contains	IPv4	and	IPv6
traffic.	There	is	only	UDP	traffic	running	over	IPv6	and	only	TCP	traffic	running	over	IPv4.

You	cannot	sort	or	reorder	items	in	the	Protocol	Hierarchy	because	of	the	hierarchical	structure	of	the	list.

Figure	97.	Wireshark	creates	a	hierarchical	view	of	the	protocols	and	applications	seen	in	the	trace	file.	[http–browse101b.pcapng]

Right-Click	Filter	or	Colorize	any	Listed	Protocol	or	Application
To	perform	further	research	on	any	type	of	traffic	shown,	right-click	on	a	line	and	select	Apply	as	Filter
or	Prepare	a	Filter.	You	can	also	use	right-click	to	build	a	coloring	rule	based	on	a	protocol	or
application.

Look	for	Suspicious	Protocols,	Applications	or	"Data"
This	is	a	great	window	to	examine	when	you	think	a	host	may	be	compromised.	For	example,	this	window
would	help	you	identify	unusual	network	applications,	such	as	(1)	Distributed	Computing
Environment/Remote	Procedure	Call	(DCE/RPC)	traffic	directly	under	TCP,	(2)	Internet	Relay	Chat
(IRC)	traffic,	or	(3)	Trivial	File	Transfer	Protocol	(TFTP)	traffic,	as	shown	in	Figure	98.	When	you	see
this	suspicious	traffic,	right-click	to	filter	on	the	traffic	and	examine	the	traffic	to	determine	if	it	is
malicious[42].

"Data"	listed	directly	under	TCP	or	UDP	in	the	Protocol	Hierarchy	window	indicates	that	Wireshark
could	not	apply	a	dissector	to	the	traffic	because	it	does	not	recognize	the	port	number	and	no	heuristic
dissector	matched	the	packets.	Note	that	we	enabled	the	Allow	the	subdissector	to	reassemble	TCP
streams	TCP	preference	before	opening	the	Protocol	Hierarchy	window.	This	gives	a	cleaner	picture	of
the	protocols	in	use.

Figure	98.	Look	for	unusual	applications	or	the	word	"data"	directly	under	TCP	or	UDP.	[sec–concern101.pcapng]

Decipher	the	Protocol	Hierarchy	Percentages
The	%	Packets	and	%	Bytes	column	values	can	be	confusing.	The	percentages	shown	in	these	two
columns	are	percentages	of	the	total	traffic,	regardless	of	how	deep	we	are	in	the	protocol	hierarchy.
Figure	99	shows	the	Protocol	Hierarchy	window	for	general101b.pcapng.	"Internet	Control	Messaging
Protocol	v6"	is	shown	as	9.74%.	That	is	9.74%	of	the	total	traffic,	not	9.74%	of	the	parent	protocol,	IPv6.

Sometimes	it	helps	to	collapse	the	Transmission	Control	Protocol	and	User	Datagram	Protocol	sections	to
see	how	the	percentages	relate	to	the	total	value.

Based	on	the	%	Packets	column,	we	can	see	that	86.09%	of	the	total	traffic	in	this	trace	file	is	IPv4-
based	traffic	and	only	13.91%	of	the	packets	in	this	trace	file	is	IPv6-based	traffic.

Of	the	total	traffic,	75.13%	of	the	total	packets	use	TCP	and	10.96%	are	UDP-over-IPv4	and	4.17%	are
UDP-over-IPv6.	Another	9.74%	of	packets	are	ICMP.	Add	these	together	and	you	have	accounted	for
100%	of	the	traffic	in	the	trace	file.

Figure	99.	Collapse	the	TCP	and	UDP	sections	to	get	a	clear	look	at	the	basic	percentages	provided	in	the	Protocol	Hierarchy
window.	[general101b.pcapng]

In	Figure	100,	we	expanded	the	Transmission	Control	Protocol	section	in	the	Protocol	Hierarchy	window.
This	indicates	that	2.09%	of	the	total	traffic	is	Hypertext	Transfer	Protocol,	2.09%	of	the	total	traffic	is
Dropbox	LAN	sync	Protocol	and	18.96%	of	the	traffic	is	Secure	Sockets	Layer	traffic.	This	only	accounts
for	23.14%	of	the	total	traffic.

Here's	where	the	Protocol	Hierarchy	window	can	become	confusing.

If	75.13%	of	all	the	traffic	is	TCP-based,	but	only	23.14%	is	associated	with	these	applications,	where	is
the	other	51.99%	of	TCP-based	traffic?

Look	at	the	Protocol	column	in	the	Packet	List	pane	of	general101b.papng.	Whenever	you	see	the	value
"TCP,"	Wireshark	does	not	associate	that	packet	with	a	particular	application—it	is	part	of	the	TCP
connection	establishment,	acknowledgment,	teardown	process,	etc.

We	can	view	these	TCP	packets	with	the	display	filter	tcp	&&	!http	&&	!db-lsp	&&	!ssl.

Figure	100.	The	percentage	values	of	applications	listed	under	TCP	are	based	on	their	percentage	of	total	traffic	in	the	trace	file.
[general101b.pcapng]

In	Figure	101,	we	collapsed	the	TCP	section	and	expanded	the	UDP	sections	under	the	IPv4	and	IPv6
sections.	When	we	add	up	the	%	Packets	value	under	the	UDP	sections,	they	should	equal	or	be	very
close	to	the	total	UDP	value	above	them.

Because	of	numerical	rounding,	you	may	find	the	sum	is	slightly	off.	For	example,	we	see
HTTP/UDP/IPv6	listed	as	2.09%	of	total	traffic	and	DNS/UDP/IPv6	listed	as	2.09%	as	well.	Adding
these	two	together	gives	us	a	total	of	4.18%,	however	we	see	UDP/IPv6	listed	as	4.17%.

Figure	101.	The	percentage	values	under	UDP	are	based	on	their	percentage	of	total	traffic	in	the	trace	file.	[general101b.pcapng]

	Lab	33:	Detect	Suspicious	Protocols	or	Applications
When	you	are	concerned	that	there	may	be	a	security	issue	in	your	trace	file,	open	the	Protocol	Hierarchy
window	first.	Look	for	suspicious	applications	or	protocols	and	the	dreaded	"data"	under	IP,	UDP,	or
TCP.

Step	1:	Open	general101c.pcapng.

Select	Step	2:Statistics	|	Protocol	Hierarchy.	This	trace	file	contains	some	traffic	of	concern.	We	see
Internet	Relay	Chat	and	Data	under	the	TCP	section.

Right-click	on	the	Step	3:Internet	Relay	Chat	line	and	select	Apply	as	Filter	|	Selected	to	examine	it
further.	Expand	the	Internet	Relay	Chat	section	in	the	Packet	Details	pane	to	learn	more	about	the
communications.	Look	for	the	user	name	and	the	target	IRC	server.	Perform	the	same	steps	to	examine	the
traffic	listed	as	"data."	In	Chapter	6	you	will	revisit	this	file	to	reassemble	the	communications	for	further
analysis.

Step	4:	[Lab	Clean-up]	Click	the	Clear	button	to	remove	any	display	filters.	Toggle	back	to	the	Protocol
Hierarchy	window	to	close	it.

Remember	to	use	the	Protocol	Hierarchy	window	first	when	you	suspect	malicious	traffic	on	the	network.
It's	a	quick	way	to	find	breached	hosts.

5.4.	Graph	Application	and	Host	Bandwidth
Usage
Although	you	can	use	the	Protocol	Hierarchy	to	determine	the	percent	of	total	bytes	or	packets	that	an
application	uses,	a	graph	can	help	you	analyze	the	flow	of	applications	in	a	trace	file.

Export	the	Application	or	Host	Traffic	before	Graphing
One	of	the	easiest	ways	to	determine	how	much	bandwidth	an	application	or	host	is	using	is	to	filter	on
that	traffic	type	and	export	the	traffic	to	a	separate	trace	file.	For	example,	http–download101e.pcapng
contains	traffic	to	and	from	a	single	host,	24.6.173.220.	This	trace	file	was	created	by	exporting	a	host's
traffic	from	a	larger	trace	file.

Note:	This	is	a	large	trace	file	(168	MB)	and	may	be	slow	to	load.

Select	Statistics	|	IO	Graph	to	plot	all	the	traffic	in	the	trace	file	based	on	packets	or	bits.	By	default,
Wireshark	plots	the	packets	per	tick	(Y	axis)	where	each	tick	is	one	second	(X	axis).	When	we	categorize
the	bandwidth	usage	of	an	application,	we	talk	about	bits	per	second	or	megabits	per	second.	In	Figure
102,	we	changed	the	Y	axis	to	bits/tick	(each	tick	being	one	second	based	on	the	X	axis	setting).	This
gives	us	a	clear	view	of	the	traffic	to	and	from	that	single	host.	This	download	process	averages	5	Mbps.

Figure	102.	The	IO	Graph	shows	the	flow	of	traffic	in	a	trace	file.	[http–download101e.pcapng]

If	you	want	to	compare	application	usage	in	an	IO	Graph,	define	the	application	traffic	in	the	filter	areas.
When	you	graph	TCP-based	applications,	be	sure	to	base	your	filter	on	a	port	number	(tcp.port==80)
rather	than	the	application	name	to	make	sure	you	capture	the	connection	setup	and	acknowledgments.	For
UDP-based	applications,	such	as	DNS,	you	can	filter	based	on	the	application	name	(dns)	or	port	number.
If	you	are	graphing	a	protocol,	such	as	ICMP,	simply	filter	on	the	protocol	name	(icmp)	and	export	the
packets	to	a	new	trace	file.	We	will	cover	applying	port	filters	to	IO	Graphs	after	we	examine	applying	IP
address	filters	to	IO	Graphs.

Apply	ip.addr	Display	Filters	to	the	IO	Graph
If	your	trace	file	contains	several	IP	conversations,	you	can	use	display	filter	syntax	to	graph	the
conversation	for	you.	Simply	enter	your	IP	address	filter	in	one	of	the	graph	filter	areas	and	click	the
associated	Graph	button.	In	Figure	103,	we	entered	two	IP	address	filters	to	graph	the	traffic	to	and	from
207.236.215.136	(Graph	2)	and	24.6.173.220	(Graph	3)	during	a	live	capture	process.	We	clicked	on	the
Graph	1	button	to	turn	off	that	graph	line.	We	used	impulse	style	in	Graph	2	and	Fbar	style	in	Graph	3.

This	IO	Graph	indicates	that	traffic	is	flowing	to	or	from	24.6.173.220	much	more	often	than	traffic	is
flowing	to	or	from	207.236.215.136.	You	can	use	this	type	of	filtered	graph	to	compare	the	traffic	rates	of
two	or	more	hosts.

Figure	103.	Use	the	IO	Graph	to	identify	trends	in	traffic	to	or	from	a	host	during	a	live	capture	process	or	when	opening	a	saved
trace	file.	[live	capture	process]

Apply	ip.src	Display	Filters	to	the	IO	Graph
If	you	want	to	graph	unidirectional	traffic,	use	an	ip.src	,	ip.dst,	ipv6.src	or	ipv6.dst	display	filter.

For	example,	in	Figure	104,	we	opened	http–download101e.pcapng	and	launched	the	IO	Graph.	We
added	two	graph	lines	using	the	ip.src	filter	with	the	IP	address	of	a	client	downloading	a	file	(Graph	2)
and	the	IP	address	of	a	server	that	is	sending	a	file	to	this	client	in	the	trace	file	(Graph	4).

This	graph	indicates	that	24.6.173.220	is	more	active	at	the	very	beginning	of	the	trace	file	(as	it
communicates	with	other	servers	and	resolves	addresses).	Approximately	10	seconds	into	the	trace	file,
however,	we	see	the	majority	of	the	traffic	is	transmitted	by	the	server	(199.255.156.18).	In	fact,	traffic
from	the	server	accounts	for	almost	all	the	bits/tick	graphed.

Figure	104.	Using	ip.src,	we	applied	a	filter	to	compare	the	traffic	flowing	from	two	different	hosts.	[http–download101e.pcapng]

Apply	tcp.port	or	udp.port	Display	Filters	to	the	IO	Graph
If	you	want	to	compare	the	bandwidth	use	of	numerous	applications	in	a	trace	file,	simply	filter	on	the
port	number	for	TCP-based	applications	or	on	the	application	name	or	port	number	for	UDP-based
applications.

In	Figure	105,	we	launched	the	IO	Graph	while	we	were	running	a	live	capture.	We	set	the	Y	Axis	to
Bits/Tick.	To	find	out	how	much	bandwidth	was	in	use	by	HTTP	traffic	on	port	80,	we	added	a	display
filter	(tcp.port==80)	and	clicked	the	Graph	2	button.	We	also	added	a	filter	for	the	FTP	command	and
data	traffic	(tcp.port==20	||	tcp.port==21)	and	clicked	the	Graph	3	button.	Finally,	we	clicked	the	Graph
1	button	to	disable	it.	At	approximately	160	seconds	into	the	trace	file,	our	graph	indicates	that	port	80
traffic	decreases	and	port	20	and	port	21	traffic	increases.

Figure	105.	The	IO	Graph	shows	the	flow	of	traffic	during	a	live	capture	process	or	when	opening	a	saved	trace	file.	[live	capture
process]

As	you	add	Graph	2	through	Graph	5	to	the	IO	Graph,	keep	in	mind	the	order	of	the	graph	lines.	Graph
5	will	be	plotted	farthest	in	the	background	with	Graph	1	plotted	in	the	foreground.	If	you	leave	Graph
1	on	and	set	it	to	Fbar,	Graph	2	through	Graph	5	may	be	blocked	by	the	Fbar	if	their	plot	values	are
lower	than	the	Graph	1	plot	values.

	Lab	34:	Compare	Traffic	to/from	a	Subnet	to	Other	Traffic
In	this	lab	you	will	compare	all	the	traffic	to	or	from	subnet	184.0.0.0/8	to	all	other	traffic.	To	do	this,	you
will	use	two	IP	address	filters—one	inclusion	filter	and	one	exclusion	filter.

Step	1:	Open	http-espn101.pcapng.

Step	2:	Select	Statistics	|	IO	Graph.

Step	3:	Click	the	Graph	1	button	to	disable	it.	We	will	only	be	using	Graph	2	(red)	and	Graph	4	(blue)	to
compare	this	traffic.

Step	4:	In	the	filter	area	for	Graph	2,	enter	ip.addr==184.0.0.0/8	and	click	the	Graph	2	button.

In	the	filter	area	for	Graph	4,	enter	!ip.addr==184.0.0.0/8,	set	the	Graph	4	style	to	Fbar	and	click	the
Graph	4	button.

Step	5:	[Lab	Clean-up]	Close	your	IO	Graph	before	you	move	on.

If	we	had	set	the	Graph	2	style	to	Fbar,	we	would	not	be	able	to	see	the	results	of	Graph	4	because	of	the
graph	ordering.	This	graph	clearly	shows	that	more	packets	go	to	or	from	subnet	184.0.0.0/8	than	to	or
from	any	other	networks	in	this	trace	file.

It	is	easy	to	graph	traffic	to	or	from	various	subnets.	Consider	capturing	traffic	on	your	network	to
determine	where	it	is	flowing.

5.5.	Identify	TCP	Errors	on	the	Network
Wireshark	understands	many	types	of	TCP	network	errors,	such	as	packet	loss	and	receiver	congestion.
When	Wireshark	sees	packets	that	indicate	network	problems	have	occurred,	it	makes	a	note	in	the	Expert
System.

Use	the	Expert	Infos	Button	on	the	Status	Bar
We	will	leave	the	IO	Graphing	for	a	moment	to	view	the	Expert	window.	On	the	Status	Bar,	click	on	the
Expert	Infos	button.	The	Expert	classifies	information	into	6	categories.	The	color	on	the	Expert	Infos
button	indicates	the	highest	layer	of	Expert	detail	seen:

Errors:	red
Warnings:	yellow
Notes:	cyan
Chats:	blue
Details:	grey
Packet	Comments:	green

In	Figure	106,	the	Expert	Infos	button	is	yellow[43],	which	indicates	that	there	are	no	Expert	errors,	but
there	are	warnings	in	http-espn101.pcapng.

Figure	106.	The	Expert	Infos	button	is	color-coded	to	let	you	know	the	highest	level	of	Expert	detail	seen.	[http–espn101.pcapng]

Deal	with	"Unreassembled"	Indications	in	the	Expert
In	Figure	107,	we	see	five	different	issues	listed	under	the	Warnings	tab.	Unfortunately,	each	item	that
begins	with	"Unreassembled"	is	listed	here	because	we	disabled	TCP	reassembly	(Edit	|	Preferences	|
TCP	|	Allow	subdissector	to	reassemble	TCP	streams).

Figure	107.	If	you	see	these	"unreassembled"	warnings,	consider	enabling	the	Allow	subdissector	to	reassemble	TCP	streams
preference	setting.	[http–espn101.pcapng]

You	can	disregard	those	warnings	and	continue	to	examine	the	other	warnings	or	you	can	close	the	Expert
window,	enable	TCP	reassembly,	and	open	the	Expert	window	again,	as	shown	in	Figure	108.

Figure	108.	The	Warnings	area	indicates	that	a	host	has	run	out	of	receive	buffer	space	(Zero	window).	[http–espn101.pcapng]

Filter	on	TCP	Analysis	Flag	Packets
You	can	quickly	view	all	packets	that	are	defined	as	TCP	analysis	flag	packets	by	simply	applying	a
display	filter	for	tcp.analysis.flags.	If	you	are	only	interested	in	viewing	TCP	problems	in	the	trace	file,
explicitly	exclude	the	Window	Update	packets	by	filtering	for	tcp.analysis.flags	&&
!tcp.analysis.window_update.	TCP	Window	Update	packets	are	marked	with	a	TCP	analysis	flag,	but	they
are	not	a	problem.	They	are	an	indication	that	a	host	has	just	increased	its	advertised	receive	buffer
space.

Figure	107	and	Figure	108	show	the	Expert	Infos	LEDs	(visible	in	eBook	only)	on	the	first	four	Expert
Infos	tabs.	Consider	enabling	LEDs	in	the	Expert	window	to	help	learn	the	Expert	Infos	button
coloring	scheme	faster.	Select	Edit	|	Preferences	|	User	Interface	and	enable	Display	LEDs	in	the
Expert	Infos	dialog	tab	labels.	Once	you	make	this	change,	open	the	Expert	Infos	window	to	see	the
color-coded	tabs.

5.6.	Understand	what	those	Expert	Infos	Errors
Mean
Wireshark	can	detect	many	network	problems,	but	it	does	not	tell	you	what	causes	those	problems.
Understanding	the	causes	of	the	errors,	warnings,	and	notes	will	help	you	figure	out	what	may	be	affecting
network	performance.

This	section	lists	the	most	common	causes	of	the	various	Expert	errors,	warnings,	and	notes.

Packet	Loss,	Recovery,	and	Faulty	Trace	Files
Before	looking	for	application	problems,	check	to	see	if	there	are	TCP	errors	in	the	trace	file.	No
application	can	perform	well	when	the	underlying	network	is	falling	apart.

Previous	Segment	Not	Captured	(Warnings)
This	warning	indicates	that	Wireshark	did	not	see	the	previous	packet(s)	in	a	TCP	communication.
Wireshark	tracks	the	packet	ordering	based	on	TCP	Sequence	Numbers	and	can	therefore	easily	detect
when	packets	are	missing.	Packet	loss	typically	occurs	at	an	internetwork	device,	such	as	a	switch	or	a
router.	Compare	the	sender's	TCP	Sequence	Number	in	a	packet	marked	this	way	to	the	sender's	previous
packet	to	see	how	many	packets	were	lost.

ACKed	Lost	Packet	(Warnings)
This	warning	indicates	that	Wireshark	saw	a	TCP	ACK,	but	it	did	not	see	the	data	packet	that	is	being
acknowledged.	If	you	were	capturing	on	a	spanned	switch,	the	switch	may	be	overloaded	and	unable	to
forward	all	the	packets	to	Wireshark.	A	trace	file	containing	numerous	ACKed	Lost	Packet	warnings
should	not	be	used	for	analysis.	You	do	not	have	a	complete	view	of	traffic.

Duplicate	ACK	(Notes)
These	notes	indicate	that	a	TCP	host	receiving	data	from	another	host	believes	a	packet	is	missing.	This
is,	in	essence,	a	complaint	requesting	a	missing	packet.	When	the	sender	receives	three	ACKs	requesting
the	same	data	packet	(as	noted	in	the	Acknowledgment	Number	field	of	the	ACKs),	it	should	resend	the
missing	packet.	These	are	part	of	the	packet	loss	recovery	process	and	are	likely	caused	by	a	switch	or
router	dropping	packets.

Retransmission	(Notes)
These	notes	occur	when	Wireshark	sees	two	data	packets	with	the	same	sequence	number.	A	sender	will
retransmit	packet	when	it	doesn't	receive	a	timely	acknowledgment	for	a	data	packet	that	it	sent.	This	is
another	part	of	the	packet	loss	recovery	process	(which	is	most	likely	caused	by	a	switch	or	router
dropping	packets).

Fast	Retransmission	(Notes)
These	notes	occur	when	Wireshark	sees	the	data	packet	that	someone	requested	through	duplicate	ACKs
within	20	ms	of	that	duplicate	ACK.	This	is	another	part	of	the	packet	loss	recovery	process	(which	is
also	most	likely	caused	by	a	switch	or	router	dropping	packets).

Asynchronous	or	Multiple	Path	Indications
Asynchronous	paths	are	indicated	when	packets	travel	one	path	outbound	and	another	path	inbound.
Multiple	paths	are	indicated	when	the	individual	packets	of	a	datastream	can	be	separated	and	travel
different	routes	to	the	target.	This	can	cause	problems	if	one	path	is	faster	than	another.

Out-of-Order	(Warnings)
This	warning	indicates	that	Wireshark	saw	a	packet	that	has	a	lower	TCP	sequence	number	than	a
previous	packet.	This	may	indicate	that	traffic	flowed	along	different	paths	to	reach	the	target.	This
typically	is	not	a	problem	unless	the	receiver	times	out	waiting	for	the	out-of-order	packet	and	begins	to
complain	by	sending	duplicate	ACKs.

Keep-Alive	Indication
The	TCP	keep-alive	process	is	designed	to	hold	an	idle	TCP	connection	open	for	future	use.	However,
since	the	connection	establishment	process	doesn't	take	much	time,	tearing	down	the	connection	when	it	is
idle	relieves	both	TCP	peers	of	the	unnecessary	overhead	of	maintaining	the	connection.

Keep-Alive	(Warnings)
A	TCP	Keep-Alive	packet	is	sent	when	a	TCP	host	hasn't	received	any	communication	from	a	peer	for	a
certain	amount	of	time.	If	no	Keep-Alive	ACK	is	received,	the	connection	may	be	terminated.	The	amount
of	time	that	a	host	waits	before	generating	a	Keep-Alive	can	usually	be	configured	on	a	TCP	host.	This
isn't	seen	as	a	problem.

Keep-Alive	ACK	(Notes)
This	note	is	the	response	to	a	Keep-Alive	packet.	It	is	not	seen	as	a	problem.

Receive	Buffer	Congestion	Indications
Each	side	of	a	TCP	connection	maintains	a	receive	buffer	(receive	window)	for	incoming	data.	If	an
application	is	slow	taking	data	out	of	the	buffer,	it	may	fill.	When	the	buffer	becomes	full,	a	host
advertises	a	zero	window	condition—no	more	data	can	be	sent	to	that	host	on	that	connection	until	the
host	indicates	it	has	buffer	space	through	a	Window	Update	packet.

Window	Full	(Notes)
This	note	indicates	that	Wireshark	has	calculated	that	the	packet	will	fill	the	available	receive	buffer
space	of	the	target.	This	packet	itself	is	not	a	problem,	but	it	can	be	the	last	packet	before	a	zero	window
condition.

Zero	Window	(Warnings)
Zero	Window	warnings	indicate	that	the	sender	is	advertising	a	TCP	window	size	value	of	0,	meaning	it
has	no	receive	buffer	space	available.	The	other	side	of	the	TCP	connection	cannot	send	more	data	if
there	is	no	receive	buffer	space	available.	The	application	running	on	the	host	that	sent	the	zero	window
packet	is	not	picking	up	data	from	the	receive	buffer.	This	can	be	caused	by	a	faulty	application,
overloaded	host,	or	even	an	intentional	user	prompting	process	(for	example,	the	prompt	to	save	a	file	to
a	specific	location).

Zero	Window	Probe	(Notes)
This	note	indicates	that	a	host	is	trying	to	determine	if	the	target	has	any	receive	buffer	space	available.	In
general,	this	is	an	optional	part	of	the	zero	window	recovery	process.

Zero	Window	Probe	ACK	(Notes)
This	note	indicates	a	host	has	responded	to	a	Zero	Window	Probe.	If	the	window	size	is	still	set	at	zero
then	the	zero	window	condition	continues.

Window	Update	(Chats)
This	chat	detail	indicates	that	the	sender	is	advertising	more	TCP	receive	buffer	space	than	in	the
previous	packet.	This	is	commonly	seen	in	TCP	communications	and	it	is	the	recovery	packet	seen	after	a
zero	window	condition.

TCP	Connection	Port	Reuse	Indication
Connection	reuse	can	become	a	problem	if	an	application	simply	allows	connection	timeout	at	its	own
leisure.	If	the	connection	is	not	fully	terminated	before	a	host	tries	to	use	the	port	number	again,	it	should
receive	a	service	refusal	(TCP	Reset).

Reused	Ports	(Notes)
This	note	indicates	that	a	host	is	using	the	same	port	number	as	a	previous	connection	in	the	trace	file.
Some	applications	may	reuse	previous	ports,	but	security	scanning	tools	do	this	as	well.	The	source	of
these	packets	should	be	investigated.

Possible	Router	Problem	Indication
It	seems	that	as	routers	become	smarter	and	smarter,	they	also	become	dumber.	Always	test	router
configurations	and	enhancements	to	see	if	the	router	alters	the	packet	in	an	unacceptable	way,	such	as	the
issue	listed	below.

4	NOPs	in	a	Row	(Warnings)
This	warning	indicates	that	the	TCP	option	value	0x01,	a	NOP	(No	Operation)	option,	has	been	seen	four
times	in	a	row	in	a	packet.	Since	these	NOPs	are	used	to	pad	a	TCP	header	to	end	on	a	4-byte	boundary,
you	should	never	see	four	in	a	row.	This	is	typically	caused	by	a	misbehaving	router	along	the	path.

Misconfiguration	or	ARP	Poisoning	Indication
This	is	an	expert	indication	that	must	be	investigated	further	to	determine	if	you	are	facing	an	intentional
or	unintentional	problem.

Duplicate	IP	Address	Configured	(Warnings)
This	warning	indicates	that	two	or	more	ARP	(Address	Resolution	Protocol)	response	packets	offer
different	hardware	addresses	for	the	same	IP	address.	This	is	very	unusual	and	can	either	indicate	that	a
host	IP	address	was	configured	incorrectly	(a	static	address	that	conflicts	with	the	same	address	as	a
dynamically-assigned	address)	or	a	system	is	ARP	poisoning	the	network.

When	troubleshooting	network	communications,	always	open	the	Expert	Infos	window	to	identify	any
warnings	or	notes.	Look	for	any	problems	related	to	TCP	before	pointing	at	an	application	as	the	cause	of
poor	performance.

	Lab	35:	Identify	an	Overloaded	Client
In	this	lab	we	use	the	Expert	Infos	window	to	identify	the	cause	of	poor	network	performance.	Not	only	is
the	client	overloaded	in	this	trace	file,	but	there	is	packet	loss	along	the	path	as	well.

Step	1:	Open	http-download101.pcapng.

Step	2:	Click	the	Expert	Infos	button	on	the	Status	Bar.

Step	3:	Click	the	Errors,	Warnings,	and	Notes	tabs	to	examine	the	problems	in	this	trace	file.

Step	4:	In	the	Warnings	tab,	expand	the	Window	is	Full	and	Zero	Window	sections.	Click	on	the	line
listing	packet	363.	Wireshark	jumps	to	that	packet	in	the	trace	file.	This	is	where	Wireshark	indicates	that
the	client	is	going	to	run	out	of	receive	buffer	space.

If	you	look	past	the	window	zero	problem	in	this	trace	file,	you	can	see	the	client	recover	with	a	Window
Update	packet.	A	quick	glance	at	the	Time	column	(set	to	Seconds	Since	Previous	Displayed	Packet)	and
you'll	understand	why	this	is	a	condition	to	watch	for	on	your	network.

Step	5:	[Lab	Clean-up]	When	you	are	finished	looking	through	the	Expert	information,	click	the	Close
button	in	the	Expert	Infos	window.

The	Expert	Infos	window	is	one	of	the	first	places	you	should	look	when	analyzing	network	performance
issues.

5.7.	Graph	Various	Network	Errors
Wireshark	understands	many	types	of	TCP	network	errors,	such	as	packet	loss	and	receiver	congestion.
When	Wireshark	sees	packets	that	indicate	network	problems	have	occurred,	it	tags	the	packets	with
"tcp.analysis.flags."

Just	as	you	applied	IP	address	and	port	filters	in	the	previous	tasks,	you	can	also	graph	all	TCP	analysis
flags	or	specific	flags.

Graph	all	TCP	Analysis	Flag	Packets	(Except	Window	Updates)
If	you	are	going	to	graph	all	the	TCP	errors,	you	will	need	to	exclude	one	type	of	tagged	packet	that	was
tagged	incorrectly.	A	window	update	packet	is	good.	It	indicates	a	host	has	more	buffer	space	available	to
receive	data.	Wireshark	tags	these	packets	with	the	tcp.analysis.flags	setting.	Most	other	items	flagged	this
way	indicate	that	there	are	TCP	problems	so	we	must	explicitly	exclude	the	window	update	packets	when
graphing	TCP	problems.

In	Figure	109,	we	opened	http-download101.pcapng	and	graphed	TCP	problems	using	Fbar	format	on
Graph	2.	We	explicitly	excluded	the	window	update	packets	in	our	filter	(tcp.analysis.flags	&&
!tcp.analysis.window_update).	We	needed	to	widen	the	IO	Graph	to	view	the	entire	filter	area.	All	traffic
is	still	shown	by	the	Graph	1	line.

Figure	109.	We	graphed	all	the	tcp.analysis.flags	packets	while	excluding	the	window	update	packets.	[http-download101.pcapng]

Graph	Separate	Types	of	TCP	Analysis	Flag	Packets
In	Figure	110,	we	graphed	separate	TCP	problems	to	show	the	relationship	between	them.	Lost	segments
lead	to	duplicate	ACKs	which	lead	to	retransmissions.

Figure	110.	You	can	plot	the	separate	TCP	problems	to	observe	the	relationship	between	them.	[http–download101.pcapng]

A	picture	really	is	worth	a	thousand	words.	By	graphing	the	TCP	analysis	flag	packets	alongside	the
general	flow	of	traffic,	you	can	see	the	relationship	between	TCP	problems	and	drops	in	throughput.

	Lab	36:	Detect	and	Graph	File	Transfer	Problems
In	this	lab	we	examine	a	file	transfer	process	that	takes	place	over	TCP.	Before	we	can	consider
troubleshooting	the	application	itself,	we	must	rule	out	TCP	problems.

Step	1:	Open	general101d.pcapng.

Step	2:	Click	the	Expert	Infos	button	on	the	Status	Bar.

Step	3:	Click	the	Errors,	Warnings,	and	Notes	tabs	to	see	which	problems	were	identified	by	Wireshark
in	the	trace	file.

Wireshark	indicates	that	there	is	significant	packet	loss	in	this	trace	file.

Notice	that	we	see	578	retransmissions,	but	only	2	fast	retransmissions.	This	is	an	indication	that	the	host
sending	the	data	packets	has	noticed	packet	loss	(ACKs	did	not	arrive	in	a	timely	manner).

In	addition,	we	can	see	that	Duplicate	ACKs	reached	up	to	808	which	is	an	amazingly	high	number.	This
is	a	sure	sign	that	we	have	some	major	problems	along	the	path.

Step	4:	Close	the	Expert	Infos	window	and	select	Statistics	|	IO	Graph.

Step	5:	Enter	tcp.analysis.flags	&&	!tcp.analysis.window_update	in	the	Graph	2	filter	area	and	click	the
Graph	2	button.

The	graph	isn't	very	impressive	at	this	point	because	we	are	graphing	two	very	disparate	values—the
packets	per	second	vs.	these	specific	analysis	flag	packets.

One	of	the	problems	you	will	face	over	and	over	is	the	problem	of	graphing	two	very	different	values.
When	you	encounter	this	issue,	change	the	Y	axis	scale	to	logarithmic.

Step	6:	Click	the	arrow	next	to	the	Y	axis	scale	area	and	set	the	scale	to	Logarithmic.	This	should
completely	change	the	look	of	your	graph.

We	can	now	see	that	our	Graph	2	line	spiked	just	before	the	drop	in	throughput.	We	can	also	see	from	the
relatively	flat	graph	lines,	between	the	spikes,	that	there	were	both	analysis	flagged	packets	and	various
other	packets.	When	you	click	on	any	plotted	point	in	the	graph,	Wireshark	jumps	to	that	spot	in	the	trace
file,	allowing	you	to	examine	the	situation	further.

Step	5:	[Lab	Clean-up]	Click	the	Close	button	when	you	are	finished	viewing	the	IO	Graph.

You	can	build	a	graph	on	any	display	filter	value.	When	performance	problems	arise,	graphing	TCP
problems	alongside	all	traffic	enables	you	to	find	out	if	the	TCP	problems	are	related	to	throughput	drops.

Chapter	5	Challenge
Open	challenge101-5.pcapng	and	use	the	techniques	covered	in	this	chapter	to	answer	these	Challenge
questions.	The	answer	key	is	located	in	Appendix	A.

Question	5-1.
Create	an	IO	Graph	for	this	trace	file.	What	is	the	highest	packets-per-second	value	seen	in	this	trace	file?

Question	5-2.
What	is	the	highest	bits-per-second	value	seen	in	this	trace	file?

Question	5-3.
How	many	TCP	conversations	are	in	this	trace	file?

Question	5-4.
How	many	times	has	"Previous	segment	not	captured"	been	detected	in	this	trace	file?

Question	5-5.
How	many	retransmissions	and	fast	retransmissions	are	seen	in	this	trace	file?

Chapter	6	Skills:	Reassemble	Traffic	for	Faster
Analysis

"Network	analysis	is	all	about	the	packets:	what	kind	of	story	are	the	packets	telling?	Even	if	you
speak	fluent	binary,	you	need	a	tool	that	will	quickly	break	down	the	packets	and	the	protocols/packet
structure.	If	your	login	fails,	what	really	failed?	The	packets	will	tell	you.	What	if	you	are	using

LANDesk	to	capture	an	image	and	it	gets	so	far,	looking	successful,	then	just	dies.	No	errors.	Nothing.
The	packets	tell	the	story	(your	imaging	AD	account	password	expired...who	knew?)	Look	at	the

packets	first	instead	of	when	all	else	fails."

Lanell	Allen
Wireshark	Certified	Network	Analyst™

Quick	Reference:	File	and	Object	Reassembly	Options

1.	 Select	File	|	Export	Objects	|	[HTTP|DICOM|SMB]	to	reassemble	objects[44]
2.	 Right-click	in	the	Packet	List	pane	and	select	Follow	TCP	Stream[45]

(TCP	stream	filter)
3.	 Right-click	in	the	Packet	List	pane	and	select	Follow	UDP	Stream

(UDP	port	numbers	and	IP	addresses	filter)
4.	 Right-click	in	the	Packet	List	pane	and	select	Follow	SSL	Stream

(SSL	port	number	and	IP	addresses	filter)

6.1.	Reassemble	Web	Browsing	Sessions
Whether	you	are	troubleshooting	a	slow	web	browsing	session	or	you	just	want	to	look	"under	the	hood"
of	an	HTTP	communication,	you	can	use	Wireshark's	reassembly	feature	to	see	what's	really	going	on	by
rebuilding	the	conversations	between	HTTP	clients	and	servers.

Use	Follow	TCP	Stream
Right-click	on	an	HTTP	packet	in	the	Packet	List	pane	and	select	Follow	TCP	Stream.	Wireshark
rebuilds	the	conversation	without	any	MAC-layer,	IPv4/IPv6,	UDP/TCP	headers	or	field	names.	The
result	is	a	clearer	picture	of	what	is	being	said	between	hosts.	In	Figure	111,	we	opened	http–
browse101.pcapng,	right-clicked	on	packet	10	(an	HTTP	GET	request)	in	the	Packet	List	pane,	and
selected	Follow	TCP	Stream.	The	conversation	is	color-coded:	red	for	the	first	host	seen	in	the
conversation	and	blue	for	the	second	host	seen	in	the	conversation[46].

Figure	111.	The	communications	become	much	clearer	when	you	follow	the	stream.	[http–browse101.pcapng]

If	you	look	at	the	display	filter	area,	you'll	note	that	Wireshark	applies	a	filter	based	on	the	TCP	Stream
index	(tcp.stream	eq	0).	This	is	a	unique	number	given	to	each	TCP	conversation.	This	is	the	first	TCP
stream	in	the	file,	and	is	given	Stream	index	number	0.

TCP	stream	numbers	are	assigned	by	Wireshark.	This	field	does	not	exist	in	the	actual	packet.

Use	Find,	Save,	and	Filter	on	a	Stream
There	are	several	options	available	after	you	follow	a	stream.

Click	Find	to	search	for	a	text	string.
Click	Save	As	to	save	the	conversation	as	a	separate	file.	The	Save	As	feature	is	great	if	you	want	to
export	a	file	that	was	transported	across	a	conversation.
Select	Filter	Out	This	Stream	to	create	and	apply	an	exclude	display	filter	for	this	stream
(!tcp.stream	eq	0).	The	ability	to	filter	out	conversations	after	examining	them	is	crucial	in	narrowing
down	suspicious	traffic	on	a	network.

You	will	use	the	Filter	Out	This	Stream	function	in	Lab	38.

	Lab	37:	Use	Reassembly	to	Find	a	Web	Site's	Hidden	HTTP
Message
It	is	not	unusual	to	have	numerous	"hidden"	messages	sent	to	your	browser	when	you	hit	a	web	site.	In	this
lab	you	will	analyze	a	trace	file	that	contains	two	hidden	messages.	Afterwards,	visit	the	same	web	site
again	to	catch	other	interesting	messages.

Step	1:	Open	http-wiresharkdownload101.pcapng.

Check	your	TCP	preference	setting	to	ensure	Allow	subdissector	to	reassemble	TCP	streams	is	enabled.
This	setting	is	required	for	proper	HTTP	reassembly.

Step	2:	The	first	three	packets	are	the	TCP	handshake	for	the	web	server	connection.	Frame	4	is	the
client's	GET	request	for	the	download.html	page.	Right-click	on	frame	4	and	select	Follow	TCP	stream.

Traffic	from	the	first	host	seen	in	the	trace	file,	the	client	in	this	case,	is	colored	red.	Traffic	from	the
second	host	seen	in	the	trace	file,	the	server	in	this	case,	will	be	colored	blue.

Step	3:	Wireshark	displays	the	conversation	without	the	Ethernet,	IP,	or	TCP	headers.	Scroll	through	the
stream	to	look	for	the	hidden	message	from	Gerald	Combs,	creator	of	Wireshark.	It	is	located	in	the
server	stream	and	begins	with	X-Slogan.

Step	4:	This	isn't	the	only	message	hidden	in	the	web	browsing	session.	Now	that	you	know	the	message
begins	with	"X-Slogan,"	how	could	you	have	Wireshark	display	every	frame	that	has	this	ASCII	string?
	Click	the	Close	button	and	then	the	Clear	button	to	remove	the	TCP	stream	filter.

Apply	the	display	filter	frame	contains	"X-Slogan".

Step	5:	Right-click	on	the	two	other	displayed	frames	and	select	Follow	TCP	Stream	to	examine	the
HTTP	headers	exchanged	between	hosts.	Did	you	find	the	other	message?	Note	that	you	can	only	follow
one	stream	at	a	time	using	this	right-click	method.	You	will	need	to	clear	out	your	display	filter	before
following	the	next	stream.

Step	6:	Try	this	one	on	your	own.	Capture	all	traffic	to	and	from	your	machine	and	browse	to
www.wireshark.org	several	times.	This	slogan	value	changes	frequently	to	send	a	set	of	interesting

messages.

Step	7:	[Lab	Clean-up]	Click	the	Close	button	on	the	Follow	TCP	Stream	window	when	you	have
finished	following	streams.

Rather	than	scroll	through	a	trace	file	and	examine	each	packet	one	at	a	time,	follow	the	TCP,	UDP,	or
SSL	streams[47].	This	is	a	function	you	will	use	again	and	again	in	your	analysis	process.

6.2.	Reassemble	a	File	Transferred	via	FTP
Wireshark's	ability	to	reassemble	files	transferred	on	a	network	might	surprise	some	people.	It	should
also	emphasize	the	importance	of	using	a	secure	channel	or	even	file	encryption	to	protect	against
unwanted	interception	and	reassembly	of	confidential	files.

FTP	communications	use	two	types	of	connections:	a	command	channel	and	a	data	channel.	The	data
channel	only	consists	of	the	TCP	handshake	to	establish	the	connection	and	then	the	actual	data	transfer
itself.	Using	Follow	TCP	Stream	on	the	data	channel,	you	can	easily	reassemble	the	transferred	file	into
its	original	format.

Locate	the	data	channel	by	either	watching	packets	in	the	command	channel	leading	up	to	it,	locating
"FTP-DATA"	in	the	Protocol	column,	or	looking	for	maximum-sized	packets	following	the	RETR	or
STOR	command.	Sometimes	the	FTP	data	channel	will	be	established	over	the	default	port	20,	but	that's
not	required.	In	the	command	channel	communications,	another	port	number	can	be	defined	for	the	data
channel.

To	reassemble	the	file	transferred	on	the	FTP	data	channel,	right-click	on	the	data	packet	and	select
Follow	TCP	Stream,	as	shown	in	Figure	112.

Figure	112.	Look	for	the	FTP-DATA	or	full-sized	packets	after	the	RETR	or	STOR	command.	[ftp–download101.pcapng]

Wireshark	displays	the	communications	in	raw	format,	indicating	the	direction	of	the	data	flows	using
color	coding	(red	is	applied	to	the	first	communicating	host	while	blue	is	applied	to	the	second
communicating	host).	Select	Save	As	and	name	your	new	file	based	on	the	file	name	seen	in	the	RETR	or
STOR	command	preceding	this	file	transfer.

That's	it.	You	now	have	an	exact	duplicate	of	the	file	that	was	transferred	over	FTP.

When	you	follow	streams	that	contain	a	file,	you	can	usually	identify	the	file	based	on	the	first	few
bytes.	For	example,	.jpg	image	files	begin	with	JFIF	whereas	.png	image	files	begin	with	the	byte
string	0x89-50-4E-47.	It's	good	to	know	what	format	the	file	uses	if	you	want	to	reassemble	that	file.
Take	a	look	at	a	tool	called	TRIDnet	to	identify	file	types	(mark0.net/soft-tridnet-e.html).

http://mark0.net/soft-tridnet-e.html

	Lab	38:	Extract	a	File	from	an	FTP	File	Transfer
In	this	lab	you	will	follow	an	FTP	data	stream	to	reassemble	the	file	that	was	transferred.	First	you	will
reassemble	the	command	channel	traffic	to	see	the	client	login	and	file	retrieval	commands,	and	then	you
will	reassemble	the	data	transfer	channel	traffic	to	view	the	file	transferred.

Step	1:	Open	ftp-clientside101.pcapng.

Step	2:	Scroll	through	the	beginning	of	this	trace	file.	You	will	see	numerous	FTP	commands	used	to
login,	request	a	directory,	define	a	port	number	for	the	data	transfer,	and	retrieve	a	file.

Step	3:	Right-click	on	frame	6	(USER	anonymous)	and	select	Follow	TCP	Stream.	You	can	easily	read
the	commands	and	responses	exchanged	between	the	client	and	server.	The	client	logged	in	(USER	and
PASS),	requested	the	directory	listing	(NLST),	set	the	transfer	type	to	binary	(TYPE),	defined	a	port	to
use	for	the	data	channel	(PORT),	requested	a	file	(RETR),	and	ended	the	connection	(QUIT).

Step	4:	There	are	two	data	connections	in	this	trace	file:	one	for	the	directory	list	and	another	for	the	file
transfer.	We	are	only	interested	in	these	two	data	streams,	and	not	the	command	channel	stream.	In	the
Follow	TCP	Stream	window,	click	the	Filter	Out	This	Stream	button.	This	closes	the	TCP	stream
window	and	applies	an	exclusion	filter.

Step	5:	Now	you	only	see	the	data	channel	traffic.	Frames	16	through	18	and	frames	35	through	38	are
TCP	handshake	packets	to	establish	the	two	required	data	channels.

Right-click	on	frame	16	and	select	Follow	TCP	Stream.	This	stream	list	indicates	there	is	only	one	file
(pantheon.jpg)	in	the	directory.	Remember	this	file	name.	You	will	use	it	later	in	this	lab.

Step	6:	Click	the	Filter	Out	This	Stream	button.	This	closes	the	TCP	stream	window	and	adds	to	the

existing	exclusion	filter.

Step	7:	The	only	remaining	traffic	displayed	is	the	file	transfer	traffic.	Right-click	on	any	frame	and	select
Follow	TCP	Stream.

You	can	view	the	file	identifier	that	indicates	this	is	a	.jpg	file	(JFIF)	and	the	metadata	contained	in	the
graphic	file.

Step	8:	To	reassemble	the	graphic	image	transferred	in	this	FTP	communication,	click	the	Save	As
button,	select	a	target	directory	for	the	file,	and	set	the	file	name	as	pantheon.jpg.	Click	Save.

Step	9:	Navigate	to	the	target	directory	and	open	pantheon.jpg.	You	should	see	the	following	photo.

Step	7:	[Lab	Clean-up]	When	you've	finished	examining	the	Pantheon	image	you	extracted,	close	your
image	viewer.	Return	to	Wireshark	to	close	the	TCP	Stream	window	and	clear	your	display	filter.

It	is	easy	to	reassemble	files	transferred	by	FTP.	Use	Follow	TCP	Stream	and	Filter	Out	This	Stream	to
examine	the	commands	and	filter	them	out	of	view.

6.3.	Export	HTTP	Objects	Transferred	in	a	Web
Browsing	Session
When	analyzing	HTTP	communications,	it	can	be	helpful	to	see	what	individual	page	elements	(HTTP
objects)	were	transferred.	You	can	reassemble	html,	graphics,	JavaScript,	videos,	style	sheet	objects,	and
more.

Check	Your	TCP	Preference	Settings	First!
Before	beginning	this	process,	ensure	your	TCP	preference	for	Allow	subdissector	to	reassemble	TCP
streams	is	enabled.

If	you	don't	enable	TCP	reassembly,	Wireshark	cannot	reassemble	the	HTTP	objects.	In	fact,	Wireshark
will	list	each	packet	used	to	transfer	an	object	rather	than	each	object.

View	all	HTTP	Objects	in	the	Trace	File
After	capturing	HTTP	traffic	or	opening	an	HTTP	trace	file,	select	File	|	Export	Objects	|	HTTP.
Wireshark	displays	all	the	elements	transferred	in	the	HTTP	traffic.

In	Figure	113,	we	opened	http-espn101.pcapng	and	selected	File	|	Export	Objects	|	HTTP	to	list	the
various	objects	transferred	when	someone	browsed	to	www.espn.com.	Note	that	the	client	connected	to
numerous	servers	when	building	the	main	view	of	the	web	site.	Some	of	these	objects	were	served	by	ad
servers.

	
Figure	113.	Select	File	|	Export	Objects	|	HTTP	to	export	one	or	all	of	the	objects.	[http–espn101.pcapng]

The	HTTP	object	list	window	lists	all	the	files	transferred	in	the	trace	file.

The	Packet	num	column	indicates	the	first	packet	in	each	file	transfer	process.
The	Hostname	column	provides	the	http.host	value	from	the	GET	request	that	preceded	each	file
transfer.
The	Content	Type	column	indicates	the	format	of	the	objects.	The	objects	may	be	graphics	(.png,
.jpg,	or	.gif,	for	example),	scripts	(.js,	for	example),	or	even	videos	(.swf	or	.flv,	for	example).
The	Bytes	column	indicates	the	size	of	the	transferred	object.
The	Filename	column	provides	the	name	of	the	object	requested.	The	request	for	"\"	indicates	a
request	for	the	default	element	(such	as	index.html)	on	a	web	page.

To	export	all	the	objects,	select	Save	All	and	be	patient.	This	may	take	a	long	time	if	lots	of	HTTP	objects
are	listed.

To	export	a	single	object,	select	the	object	and	click	Save	As.	Wireshark	will	fill	out	the	file	name	based
on	the	object	name,	so	all	you	need	to	do	is	select	an	export	directory.

If	you	don't	recognize	some	of	the	file	extensions	shown	in	the	HTTP	Object	List	window	(such	as	.css
for	Cascading	Style	Sheets),	visit	www.fileinfo.com/help/file_extension.	You	can	enter	the	file
extension	in	the	search	box	to	look	up	the	file	type	and	a	list	of	programs	that	use	that	type	of	file.

http://www.fileinfo.com/help/file_extension

	Lab	39:	Carve	Out	an	HTTP	Object	from	a	Web	Browsing	Session
In	this	lab,	you	will	open	a	trace	file	that	contains	a	web	browsing	session.	Using	the	File	|	Export
Objects	process,	you	will	extract	one	of	the	images	transferred	during	the	web	browsing	session.

Step	1:	Open	http-college101.pcapng.

Step	2:	If	you	didn't	already	do	so	while	reading	the	previous	section,	enable	your	Allow	subdissector	to
reassemble	TCP	streams	setting	(Edit	|	Preferences	|	(+)	Protocols	|	TCP).	When	you	finish	this	lab	you
will	disable	the	setting	again.	This	setting	is	required	for	the	File	|	Export	Objects	function.

Step	3:	You	created	a	Host	column	in	Lab	15[48].	It	may	be	hidden,	however.	Right-click	any	column
heading	and	select	Displayed	Columns	|	Host	(http.host).	You	may	need	to	widen	your	Host	column	to
see	full	host	names.

When	you	scroll	through	the	trace	file,	you	can	see	the	user	is	browsing	collegehumor.com.	We	will
create	a	list	of	the	HTTP	objects	transferred	in	this	trace	file	and	then	extract	one	of	the	files.

In	Lab	38,	you	used	Follow	TCP	Stream	to	extract	a	file	from	an	FTP	data	transfer	process.	It's	much
easier	to	extract	HTTP	objects.	

Step	4:	Select	File	|	Export	Objects	|	HTTP.	Scroll	through	the	list	of	objects	to	find	a	file	called
7c7b8db9ca172221a20922a49e92a86b-definitely-real-trampoline-trick.jpg	that	begins	downloading	in
frame	307.

Step	5:	Click	Save	As,	select	the	target	directory	and	let	Wireshark	use	the	actual	file	name.	Click	Save.

Navigate	to	your	target	directory	to	view	the	saved	file.

Step	6:	[Lab	Clean-up]	Close	the	HTTP	Object	List	window	and	right-click	on	a	TCP	header	in	the
Packet	List	pane	and	disable	the	Allow	subdissector	to	reassemble	TCP	streams	setting.

Wireshark's	object	exporting	capability	does	a	good	job	carving	HTTP	objects	out	of	a	web	browsing
session.	It	does	not	do	a	good	job	helping	you	look	through	the	exported	files,	however.	You	must	use	an
external	viewer	to	see	the	files.

If	you	are	a	forensic	investigator	who	needs	to	export	thousands	of	files	from	traffic	(also	referred	to	as
"data	carving"),	check	out	Network	Miner,	a	free	network	forensic	tool	that	can	import	.pcap[49]	files	and
carve	out	and	display	the	images.	You	can	download	Network	Miner	from	www.netresec.com.

http://www.netresec.com/

Chapter	6	Challenge
Open	challenge101-6.pcapng	and	use	the	techniques	covered	in	this	chapter	to	answer	these	Challenge
questions.	The	answer	key	is	located	inAppendix	A.

Question	6-1.
What	two	.jpg	files	can	be	exported	from	this	trace	file?

Question	6-2.
On	what	HTTP	server	and	in	what	directory	does	next-active.png	reside?

Question	6-3.
Export	booksmall.png	from	this	trace	file.	What	is	in	the	image?

Question	6-4.
Reassemble	TCP	stream	7.	What	type	of	browser	is	the	client	using	in	this	stream?

Chapter	7	Skills:	Add	Comments	to	Your	Trace
Files	and	Packets

"Wireshark	is	like	an	X-ray	machine.	It	gives	you	a	look	at	what's	going	on	inside	(the	network),	but
you	need	to	develop	the	skills	to	interpret	what	you	see	and	know	what	to	look	for—practice	makes

perfect."

Anders	Broman
Wireshark	Core	Developer	
and	System	Tester,	Ericsson

Quick	Reference:	File	and	Packet	Annotation	Options

1.	 Edit	or	Add	Packet	Comment—Right-click	on	a	packet	to	create/edit	a	packet	comment
2.	 Packet	comments	section—Packet	comments	are	displayed	in	front	of	the	Frame	section
3.	 commentfilter—Apply	a	filter	for	comment	to	view	all	packets	that	contain	comments
4.	 Expert	Infos	button—Click	to	open	the	Expert	Infos	window	which	contains	the	Packet	Comments

tab
5.	 Expert	Infos	window/Packet	Comments	tab—Click	once	on	a	comment	to	jump	to	the	comment;

click	twice	to	open	and	edit	a	comment
6.	 Trace	File	Annotation	button—Click	to	open	or	edit	the	trace	file	annotation	window[50]

7.	 Statistics	|	Summary—Displays	trace	file	information,	including	trace	file	annotations
8.	 Title	bar—Wireshark	adds	an	asterisk	to	the	Title	Bar	to	indicate	that	changes	to	the	trace	file	(such

as	trace	file	or	packet	annotations)	have	not	been	saved

7.1.	Add	Your	Comments	to	Trace	Files
Before	you	hand	your	trace	files	off	to	another	analyst	or	to	a	customer,	consider	adding	some	notes	on	the
packets	that	interest	you	or	on	the	trace	file	in	general.	Trace	file	and	packet	comments	are	saved	with
.pcapng	trace	files	and	can	be	read	in	Wireshark	version	1.8	and	later.

To	add	a	comment	to	the	entire	trace	file,	click	the	Annotation	button	on	the	Status	Bar,	as	shown	in
Figure	114.

Figure	114.	Click	the	Annotation	button	on	the	Status	Bar	to	add	a	trace	file	comment.

Although	you	can	type	in	any	length	comment,	keep	in	mind	that	the	trace	file	size	will	be	affected	by	the
note	size,	so	don't	write	a	novel	in	there.	If	you	are	going	to	hand	this	trace	to	another	analyst	who	may
add	their	own	comments,	consider	prefacing	your	comment	with	your	name,	as	shown	in	Figure	115.
Wireshark	does	not	keep	track	of	who	entered	text	in	this	window.

Remember	to	save	your	trace	file	after	adding	comments.	Wireshark	places	an	asterisk	in	front	of	the	file
name	in	the	title	bar	if	there	are	unsaved	comments	in	a	trace	file.

Figure	115.	Type	your	trace	file	comments	and	click	OK.

To	determine	if	a	file	contains	trace	file	comments,	click	on	the	Annotation	button	or	select	Statistics	|
Summary.

7.2.	Add	Your	Comments	to	Individual	Packets
To	add	a	comment	to	a	single	packet,	right-click	the	packet	in	the	Packet	List	pane	and	select	Add	or	Edit
Packet	Comment,	as	illustrated	in	Figure	116.	Follow	the	same	steps	to	edit	a	packet	comment.

Figure	116.	If	people	collaborate	on	analysis,	add	your	name	to	your	packet	comments.	[http–cheez101.pcapng]

Once	you	create	a	packet	comment,	a	new	section	called	Packet	comments	appears	in	the	Packet	Details
window,	as	shown	in	Figure	117.	The	color	code	for	packet	comments	is	a	bright	green.

Figure	117.	Packet	comments	appear	before	the	Frame	section.	[http–cheez101.pcapng]

To	determine	if	a	trace	file	contains	packet	comments,	click	on	the	Expert	Infos	button	on	the	Status	Bar
and	select	the	Packet	Comments	tab,	as	shown	in	Figure	118.	Click	on	a	comment	once	to	jump	to	that
packet.	Double-click	on	a	comment	to	open	the	comment	for	viewing	or	editing.

Figure	118.	Packet	comments	are	listed	in	the	Expert	Infos	window.	[http–cheez101.pcapng]

Use	the	.pcapng	Format	for	Annotations
If	you	opened	a	trace	file	that	uses	an	older	trace	file	format	(such	as	.pcap),	be	sure	to	save	your	trace
file	in	.pcapng	format	after	adding	packet	or	trace	file	comments.	Saving	in	any	other	format	will	delete
all	your	comments.

Add	a	Comment	Column	for	Faster	Viewing
To	view	all	your	comments	in	the	Packet	List	pane,	simply	expand	the	packet	comment	section	in	a	frame
that	contains	comments	(frame	8	in	http-cheez101.pcapng,	for	example).	Right-click	on	the	actual
comment	and	select	Apply	as	Column,	as	shown	in	Figure	119.

Figure	119.	Right-click	on	a	comment	and	select	Apply	as	Column.	[http–cheez101.pcapng]

If	you	add	or	edit	comments	to	the	trace	file,	you	must	click	the	Save	button	to	save	the	file	and	then	click
the	Reload	button	to	refresh	your	Packet	comments	column.

	Lab	40:	Read	Analysis	Notes	in	a	Malicious	Redirection	Trace	File
It	can	be	a	blessing	to	have	notes	inside	the	trace	file	to	assist	other	analysts	(or	even	you)	in	following
along	with	the	traffic	flow.	In	this	lab	you	will	examine	the	notes	left	in	a	trace	file	that	contains	unusual
communications.

Step	1:	Open	sec-suspicous101.pcapng.

Step	2:	Click	the	Annotation	button	on	the	Status	Bar	to	read	the	general	notes	about	this	trace	file	and
the	suspected	malicious	redirection.

The	trace	file	annotation	recommends	that	you	"See	packet	comments	for	more	detail."

Click	Cancel	to	close	the	Edit	or	Add	Capture	Comments	window.

	Step	3:	Click	the	Expert	Infos	button	and	click	the	Packet	Comments	tab	to	read	the	individual
comments	in	the	packets	in	this	trace	file[51].

	

Step	4:	Click	once	on	any	of	the	comments	to	jump	to	that	packet	in	the	trace	file.	Take	some	time	to	read
through	the	trace	file	and	packet	comments.	You	will	see	when	a	redirection	sends	the	user	to	a	malicious
site.

Step	5:	[Lab	Clean-up]	When	you	have	finished	looking	through	the	packet	comments,	click	the	Close
button	on	the	Expert	Infos	window.

Trace	file	annotations	can	be	very	helpful	when	there	are	many	separate	events	happening	in	the	trace	file.
In	Lab	41	we	will	export	all	the	packet	comments	in	this	trace	file.

7.3.	Export	Packet	Comments	for	a	Report
If	you	plan	to	create	a	printed	report	of	your	analysis	findings,	consider	adding	packet	comments	and
exporting	those	comments	into	.txt	or	.csv	format.

As	of	Wireshark	1.9.0	(which	is	the	development	version	leading	to	Wireshark	1.10),	you	can	select
Statistics	|	Comment	Summary	|	Copy	and	then	paste	the	comment	data	into	another	program	(shown	in
Figure	123).	In	Wireshark	1.8.x	versions	you	can	use	the	Export	Packet	Dissections	feature	covered	in
this	section	to	perform	this	function.

Although	Wireshark	1.9.x	and	later	makes	exporting	packet	and	trace	file	annotations	a	quick	process,	in
Lab	41	you	will	have	a	chance	to	practice	exporting	packet	comments	using	the	Export	Packet
Dissections	function.	This	is	a	function	you	should	master	to	export	any	field	values.

First,	Filter	on	Packets	that	Contain	Comments
First,	apply	a	pkt_comment	filter	to	your	trace	file	to	view	only	commented	packets.

Next,	expand	the	Packet	Comments	section	of	any	displayed	packet.	Leave	the	rest	of	the	packet
compressed,	as	shown	in	Figure	120.

Figure	120.	Filter	on	pkt_comment	and	then	expand	the	Packet	comments	section	of	a	packet	before	your	export	operation.	[sec-
suspicious101.pcapng]

Next,	Export	Packet	Dissections	as	Plain	Text
Select	File	|	Export	Packet	Dissections	|	as	"Plain	Text"	file	and	choose	All	packets	(Displayed),
Packet	details	(As	displayed),	as	shown	in	Figure	121.	Uncheck	the	Packet	summary	checkbox.	Consider
naming	your	text	file	with	the	same	stem	as	the	trace	file.	For	example,	if	your	trace	file	is	sec–
suspicious101.pcapng,	name	your	text	file	sec–suspicious101.txt.

Figure	121.	Set	up	your	export	to	include	displayed	packets	and	only	the	Packet	details	"As	displayed".

The	result	will	be	a	file	that	includes	packet	comments	preceding	the	Frame	summary	of	each	packet,	as
shown	in	Figure	122.

Figure	122.	Export	your	packet	comments	into	a	.txt	file	to	copy	into	a	report.

In	Wireshark	1.8.x,	only	65	characters	of	the	Packet	Comments	field	are	exported.

As	mentioned	earlier,	Wireshark	1.9.x	and	later	offers	a	Statistics	|	Comments	Summary	|	Copy	feature
to	export	all	packet	comments	and	basic	trace	file	statistics.	Figure	123	shows	the	Comments	Summary
window.	Simply	click	the	Copy	button	to	buffer	the	contents	of	this	window	and	paste	the	contents	into
another	program.

	
	Figure	123.	To	quickly	export	trace	file	and	packet	comments,	use	the	Statistics	|	Comments	Summary	in	Wireshark	1.9.x	and	later.

Since	Wireshark	supports	packet	and	file	anotations,	consider	building	your	troubleshooting	and	network
forensics	reports	directly	in	Wireshark	by	adding	comments	in	the	trace	files.	When	you	have	finished
annotating	your	findings,	export	your	packet	comments	for	quick	inclusion	in	your	reports.

	Lab	41:	Export	Malicious	Redirection	Packet	Comments
We	will	use	the	sec-suspicious101.pcapng	trace	file	again	in	this	lab.	We	will	use	a	two-step	process	for
comment	export.	First	we	will	prepare	the	trace	file	to	export	the	field	information	we	are	most	interested
in.	We	will	export	the	fields	in	text	format.	Unlike	in	the	previous	section,	we	will	export	the	packet
comments	using	the	Packet	summary	line.

Step	1:	Open	sec-suspicious101.pcapng.

Step	2:	In	frame	1,	right-click	on	the	Packet	comments	line	in	the	Packet	Details	area	and	select	Apply
as	Filter	|	Selected.	Only	19	packets	should	match	your	display	filter.

Step	3:	Now	expand	the	Packet	comments	section	of	frame	1.	Right-click	on	the	actual	comment	starting
with	"This	is	the	original..."	and	select	Apply	as	Column.

Step	4:	Select	File	|	Export	Packet	Dissections	|	as	"CSV"	(Comma	Separated	Values	packet
summary)	file.

If	you	find	yourself	building	many	reports	detailing	your	analysis	findings,	consider	looking	into
Cascade	Pilot	by	Riverbed	(see	Consider	a	Different	Solution—Cascade	Pilot®).	This	product	was
designed	to	accept	comments	and	export	the	comments	into	a	report	along	with	charts	and	graphs
depicting	the	traffic	patterns.

Step	5:	Navigate	to	the	directory	where	you	want	to	save	your	text	file	and	name	your	file	sec-
suspicous101.csv.	Ensure	Displayed	and	Packet	summary	line	are	selected	before	clicking	Save.

Step	6:	Open	your	CSV	file	in	a	spreadsheet	program	to	review	the	exported	information.	You	will	notice
that	your	hidden	columns	are	exported	as	well.	This	is	a	good	reason	to	keep	your	hidden	column	count	to
a	minimum.	If	you	just	have	too	many	hidden	columns,	you	could	simply	switch	to	a	nice,	clean	profile
and	export	a	CSV	file	from	there.

Step	7:	Lab	Clean-up		Return	to	Wireshark	and	click	the	Clear	button	to	remove	your	display	filter.
Right-click	on	your	Comment	column	heading	and	select	Remove	Column	or	Hide	Column	if	you	wish
to	retain	this	column	for	later	use.

You	should	master	the	skill	of	adding	columns	to	use	for	exported	reports.	As	mentioned	at	the	beginning
of	this	section,	although	Wireshark	1.9.x	and	later	supports	a	simple	Statistics	|	Comment	Summary	|
Copy	feature	to	make	exporting	comments	simple,	you	will	still	need	to	use	this	technique	to	export	other
packet	fields.

Chapter	7	Challenge
Open	challenge101-7.pcapng	and	use	the	techniques	covered	in	this	chapter	to	answer	these	Challenge
questions.	The	answer	key	is	located	in	Appendix	A.

Question	7-1.
What	information	is	contained	in	the	trace	file	annotation?

Question	7-2.
What	packet	comments	are	contained	in	this	trace	file?

Question	7-3.
Add	a	comment	to	the	POST	message	in	this	trace	file.	What	packet	did	you	alter?

Chapter	8	Skills:	Use	Command-Line	Tools	to
Capture,	Split,	and	Merge	Traffic

"Network	communication	is	a	conversation.	We	don't	usually	think	about	the	subtle	rules	of	human
conversation:	what	to	say	first,	next,	and	when	we	can	say	that,	and	when	it's	going	to	be	rude,

impolite,	and	maybe	cause	our	partner	to	quit	talking.	Once	we	learn	the	rules	of	the	protocols	and
know	what	the	calls	and	responses	should	be,	we	can	examine	what	actually	happened	and	see	where
things	went	wrong.	The	better	we	know	the	etymology	and	anthropology	of	the	protocols,	the	better	we

understand	the	trace."

John	Gonder
Cisco	Academy	Director,	Las	Positas	College

Quick	Reference:	Command-Line	Tools	Key	Options
EDITCAP

editcap	–h:	View	Editcap	parameters.
editcap	–i	360	big.pcapng	360secs.pcapng:	Split	big.pcapng	into	separate	360secs*.pcapng	files
with	up	to	360	seconds	of	traffic	in	each	file.
editcap	–c	500	big.pcapng	500pkts.pcapng:	Split	big.pcapng	into	separate	500pkts*.pcapng	files
with	up	to	500	packets	in	each	file.

MERGECAP

mergecap	–h:	View	Mergecap	parameters.
mergecap	files*.pcapng	–w	merged.pcapng:	Merge	files*.pcapng	into	a	single	file	called
merged.pcapng	(merge	based	on	packet	timestamps).
mergecap	a.pcapng	b.pcapng	–w	ab.pcapng	–a:	Merge	a.pcapng	and	b.pcapng	into	a	single	file
called	ab.pcapng	(merge	based	on	the	order	files	are	listed).

TSHARK

tshark	–h:	View	Tshark	parameters.
tshark	–D:	List	the	available	capture	interfaces	that	can	be	used	with	the	–i	parameter.
tshark	–i2	–f	"tcp"	–w	tcp.pcapng:	Capture	only	TCP-based	traffic	on	interface	2	and	save	it	to
tcp.pcapng.
tshark	–i1	–R	"ip.addr==10.2.1.1":	Capture	all	traffic	on	interface	1,	but	only	display	traffic	to	or
from	10.2.1.1.
tshark	–r	"myfile.pcapng"	–R	"http.host	contains	".ru""	–w	myfile-ru.pcapng:	Open	a	trace	file	called
myfile.pcapng	and	apply	a	display	filter	for	the	value	".ru"	in	the	HTTP	host	field—save	the	results
to	a	file	called	myfile-ru.pcapng.

8.1.	Split	a	Large	Trace	File	into	a	File	Set
Wireshark	can	become	sluggish	or	even	non-responsive	when	working	with	large	trace	files.	Once	you	get
above	that	100	MB	size,	applying	display	filters,	adding	columns,	and	building	graphs	may	be	too	slow.
Consider	splitting	larger	files	into	file	sets	for	faster	analysis.	File	sets	are	groups	of	trace	files	that	begin
with	a	common	stem	name,	trace	file	number	as	well	as	a	time	and	date	stamp.

Add	the	Wireshark	Program	Directory	to	Your	Path[52]
Use	Editcap	to	split	a	large	file	into	smaller	files	that	are	linked	together.	Editcap.exe	is	located	in	the
Wireshark	program	file	directory	(see	Help	|	About	Wireshark	|	Folders	to	locate	this	directory).	To	use
Editcap	(or	any	of	the	included	command-line	tools)	from	any	directory,	add	the	Wireshark	program
directory	to	your	path.

Once	you've	added	the	Wireshark	program	directory	to	your	path,	open	the	command	prompt/terminal
window	and	navigate	to	the	folder	that	contains	the	large	file	that	you	want	to	split	into	a	file	set.	Type
editcap	–h	to	view	all	Editcap	parameters.	You	can	split	a	file	based	on	number	of	packets	(-c	option)	or
amount	of	time	in	seconds	(–i	option).

Use	Capinfos	to	Get	the	File	Size	and	Packet	Count
Capinfos	is	a	command-line	tool	that	provides	basic	information	about	trace	files,	as	shown	in	Figure
124.	Capinfos	is	included	with	Wireshark.	It	resides	in	the	Wireshark	program	directory.	The	syntax	for
Capinfos	is	simply	capinfos	<filename>.	Use	Capinfos	to	find	the	capture	duration	(seconds)	and	packet
count	of	a	trace	file	before	splitting	it.	We	will	use	Capinfos	again	in	Lab	42.

Figure	124.	Use	Capinfos	to	obtain	basic	trace	file	information	before	splitting	the	file.	[http–disney101.pcapng]

Split	a	File	Based	on	Packets	per	Trace	File
In	Figure	125,	we	typed	editcap	–c	1000	a.pcapng	a1000set.pcapng	to	split	a	single	trace	file	called
a.pcapng	into	a	set	of	files	(a1000set*.pcapng)	that	contain	a	maximum	of	1,000	packets	each.	The	last
trace	file	of	the	set	will	likely	have	less	than	1,000	packets	unless	the	original	file	ended	on	a	1,000-
packet	count	boundary.

Figure	125.	Use	the	–c	parameter	to	split	a	trace	file	based	on	packet	count.

Split	a	File	Based	on	Seconds	per	Trace	File
In	Figure	126,	we	typed	editcap	–i	360	b.pcapng	b360set.pcapng	to	split	a	single	trace	file	called
b.pcapng	into	a	set	of	files	(b360set*.pcapng)	that	contain	up	to	360	seconds	of	traffic	each.	Wireshark
will	not	split	a	packet	in	half	at	the	360	second	mark,	so	your	files	may	have	slightly	less	than	360
seconds	of	traffic	in	them.

The	last	trace	file	of	the	set	will	likely	have	less	than	360	seconds	of	traffic	in	it	unless	the	original	file
ended	on	a	six	minute	boundary.

In	our	example,	Editcap	split	our	b.pcapng	trace	file	into	15	linked	trace	files	numbered	00000	to	00014.

Figure	126.	Use	the	–i	parameter	to	split	a	trace	file	based	on	number	of	seconds.

Open	and	Work	with	File	Sets	in	Wireshark
When	working	with	file	sets	in	Wireshark,	open	any	file	of	a	file	set	using	File	|	Open.	Then	use	File	|	File
Set	|	List	Files	to	switch	between	files	of	a	file	set	quickly.

In	Figure	127,	we	are	looking	at	the	file	list	for	a	file	set	that	contains	9	files.	Click	on	the	radio	button	in
front	of	any	file	listed	to	open	that	file	quickly.	If	you	have	display	filters	in	place,	those	display	filters
will	be	applied	to	each	file	you	open.

Figure	127.	Click	a	radio	button	to	open	another	file	in	a	file	set.

	Lab	42:	Split	a	File	and	Work	with	Filtered	File	Sets
You	will	be	working	with	http–download101c.pcapng	in	this	lab.	This	trace	file	is	only	27	MB,	but	we
will	use	it	to	practice	splitting	a	file.	After	splitting	the	file,	we	will	move	through	the	file	set	while	a
display	filter	is	applied.	Wireshark	automatically	applies	the	display	filter	to	each	file	as	it	is	opened.

Step	1:	Open	the	command	prompt	(Windows)	or	a	terminal	window	(Linux/Macintosh).

Step	2:	Navigate	to	your	trace	file	directory[53].	You	will	be	working	with	http–download101c.pcapng	in
this	lab.

Step	3:	We	are	going	to	split	this	file	based	on	the	packet	count.	Type	capinfos	"http-
download101c.pcapng"[54].

This	file	contains	is	25,727	packets.	We	will	split	this	trace	file	into	a	file	set	containing	up	to	5,000
packets	in	each	file.

Step	4:	Type	editcap	–c	5000	http-download101c.pcapng	http–downloadc5000.pcapng.	Press	enter.
Wireshark	will	create	6	files	which	begin	with	http-downloadc5000	and	contain	a	file	number	followed
by	a	date	and	timestamp,	as	shown	below.

Step	5:	Launch	Wireshark	and	select	File	|	Open	and	select	the	file	numbered	"_00003"	from	the	file	set
you	created	in	Step	4.

Step	6:	Type	tcp.analysis.flags	&&	!tcp.analysis.window_update	in	the	display	filter	area.	None	of	the
packets	in	the	_00003	file	match	our	filter,	as	shown	below.

Step	7:	Select	File	|	File	Set	|	List	Files.	Click	on	each	radio	button	to	browse	the	files.

Wireshark	applies	the	current	display	filter	as	you	open	the	various	files.	It	appears	only	the	files
numbered	"00000,"	"00001,"	and	"00002"	contain	these	flagged	TCP	packets.

As	you	move	through	the	files,	look	at	the	Status	Bar	to	determine	how	many	packets	matched	your	filter
in	each	of	the	trace	files.

Step	8:	Lab	Clean-up		Click	the	Close	button	on	the	File	Set	window	and	then	click	the	Clear	button	to
remove	your	display	filter.

Since	Wireshark	maintains	the	display	filter	setting	as	you	move	through	files	within	a	file	set,	it	is	easy	to
determine	how	many	packets	matched	the	filter.

8.2.	Merge	Multiple	Trace	Files
You	may	want	to	merge	several	smaller	files	to	create	an	IO	Graph	of	all	the	traffic,	save	time	applying
display	filters	to	look	for	key	words,	or	launch	the	Protocol	Hierarchy	window	to	detect	suspicious
protocols	or	applications.

Ensure	the	Wireshark	Program	Directory	is	in	Your	Path
Use	Mergecap	to	combine	smaller	files	into	one	larger	file.	Mergecap.exe	is	located	in	the	Wireshark
program	file	directory	(see	Help	|	About	Wireshark	|	Folders	|	Program	to	locate	this	directory).

To	use	Mergecap	from	any	directory,	add	the	Wireshark	program	directory	to	your	path.

Run	Mergecap	with	the	–w	Parameter
Assuming	you've	added	the	Wireshark	program	directory	to	your	path,	open	the	command	prompt	and
navigate	to	the	folder	that	contains	the	files	you	want	to	merge.	Type	mergecap	–h	to	view	all
Mergecap	parameters.

You	can	merge	a	file	based	on	frame	timestamps	(the	default)	or	use	the	–a	parameter	to	merge	the	files
based	on	the	order	in	which	you	list	them	during	the	merge	process.	Use	the	–w	parameter	write	the	new
merged	file	to	disk.	In	Figure	128,	we	created	a	file	called	c.pcapng	by	merging	all	files	that	have	name
starting	with	c30set.

Figure	128.	Use	Mergecap	to	combine	trace	files	based	on	frame	timestamps.

You	will	notice	that	the	merged	file	is	smaller	than	the	sum	of	bytes	of	the	separate	trace	files.	This
change	in	file	size	is	because	there	is	only	one	trace	file	header	in	the	new	file	instead	of	the	three	trace
file	headers	counted	in	the	total	bytes	count	before	the	merge.

In	Lab	43	you	will	get	a	chance	to	try	out	this	merging	skill.

	Lab	43:	Merge	a	Set	of	Files	using	a	Wildcard
In	this	lab	you	will	merge	the	six-file	http-downloadc5000*.pcapng	set	that	you	created	in	Lab	42.	You
will	use	a	wildcard	to	make	this	process	a	bit	easier	and	less	error-prone.

Step	1:	Open	the	command	prompt	(Windows)	or	a	terminal	window	(Linux/Macintosh).

Step	2:	Navigate	to	your	trace	file	directory.	Type	dir	http-downloadc5000*.*	to	view	the	trace	files	you
created	in	Lab	42.

Step	3:	Type	mergecap	–w	http-downloadset.pcapng	http–downloadc5000*.*.	Press	enter.

Type	dir	http-downloadset.pcapng	to	view	your	new	file.

If	you	compare	the	size	of	http-downloadc5000.pcapng	to	http-download101c.pcapng,	you	will	notice	a
size	difference.	During	the	file	splitting	process,	the	trace	file	annotation	is	removed.	During	the	merging
process	a	new	trace	file	annotation	is	created	that	lists	the	merged	files	as	shown	in	the	image	below.

In	this	lab	exercise,	you	used	the	default	setting	for	the	order	of	the	merged	files—merge	based	on	packet
timestamps.	If	you	wanted	to	merge	the	files	in	a	particular	order,	you	must	use	the	–a	parameter	and	list
each	trace	file	in	the	order	you	want	them	to	be	merged.

8.3.	Capture	Traffic	at	Command	Line
Use	dumpcap.exe	or	tshark.exe	to	capture	traffic	at	the	command	line	when	Wireshark	can't	keep	up	with
the	traffic	(drops	appear	on	the	Status	Bar),	or	you	are	deploying	a	streamlined	remote	capture	host,	or
you	are	scripting	an	unattended	capture.

Dumpcap	or	Tshark?
This	is	an	interesting	question.	dumpcap	is	a	capture	tool	only.	When	you	run	Tshark,	it	actually	calls
dumpcap.exe	for	capture	functionality.	Tshark	contains	extra	post-capture	parameters	which	makes	it	a
better	option	for	many	situations.	If	you	are	really	struggling	with	memory	limitations,	just	use	dumpcap
directly.	Otherwise,	Tshark	is	the	answer.

You	can	run	either	tool	at	the	command	line	to	capture	traffic	to	.pcapng	files.	Both	tools	are	located	in
the	Wireshark	program	file	directory	(see	Help	|	About	Wireshark	|	Folders	|	Program	to	locate	this
directory).	Both	can	use	capture	filters	and	various	other	capture	settings.

To	use	dumpcap	or	Tshark	from	any	directory,	add	the	Wireshark	program	directory	to	your	path[55].	Open
the	command	prompt/terminal	window	and	navigate	to	the	folder	where	you	want	to	save	trace	files.	Run
both	tools	from	this	directory.

Capture	at	the	Command	Line	with	Dumpcap
Type	dumpcap	–h	to	view	dumpcap	parameters.

Type	dumpcap	–D	to	view	your	available	interfaces,	as	shown	in	Figure	129.	Use	the	number	preceding
the	interface	name	when	you	capture.	In	the	image	below,	we	can	use	1,	2,	3,	or	4	to	select	an	interface	for
capture.

	
Figure	129.	Use	dumpcap	–D	to	view	available	interfaces.

Use	the	–c	option	to	stop	capturing	after	a	certain	number	of	packets	have	been	captured.	For	example,
dumpcap	–c	2000	–w	smallcap.pcapng	will	automatically	stop	the	capture	after	2,000	packets	have	been
captured	to	a	file	called	smallcap.pcapng.

Use	the	–a	option	with	duration:n	(seconds)	or	filesize:n	(KB)	to	stop	capturing	after	a	certain	number	of
seconds	have	elapsed	or	until	your	trace	file	has	reached	a	certain	size.	For	example,	in	Figure	130	we
typed	dumpcap	–i1	–a	filesize:1000	–w	1000kb.pcapng	to	automatically	stop	the	capture	as	soon	as	the
file	size	reaches	1000	KB.

Figure	130.	Use	–a	with	an	autostop	condition	such	as	filesize:1000.

Capture	at	the	Command	Line	with	Tshark
Tshark	relies	on	dumpcap	to	capture	traffic,	so	when	you	type	tshark	–c	100	–w	100.pcapng,	Tshark
launches	dumpcap	to	do	the	actual	capturing.

Tshark	can	be	used	for	command-line	capture,	but	it	also	offers	some	processing	options	for	existing	trace
files.	Use	tshark	–h	to	explore	more	possibilities	for	command-line	capture	with	Tshark.

Use	tshark	–D	to	view	the	available	interfaces.	Just	as	you	did	with	dumpcap,	use	the	number	preceding
the	interface	name	with	the	–i	parameter	when	capturing.	Use	–w	to	define	the	name	of	your	capture	file
and	–a	with	autostop	parameters.

Save	Host	Information	and	Work	with	Existing	Trace	Files
Why	would	someone	use	Tshark	instead	of	dumpcap?	There	are	a	few	advantages.	For	example,	Tshark
can	use	the	–H	<hosts	file>	option	during	the	capture	process.	When	your	packets	are	saved	to	a
trace	file,	the	name	resolution	information	contained	in	the	<hosts	file>	is	saved	with	your	trace	file.

Tshark	can	also	process	existing	trace	files.	For	example,	you	can	specify	an	input	trace	file,	apply	a
display	filter,	and	save	a	new	file	based	on	the	display	filter.	In	Figure	131,	we	applied	an	IP	address
display	filter	to	port80.pcapng	and	saved	a	new	trace	file	called	myport80.pcapng.

Figure	131.	Tshark	can	be	run	against	existing	trace	files.

Practice	with	the	Tshark	parameters	listed	when	you	type	tshark	–h.

	Lab	44:	Use	Tshark	to	Capture	to	File	Sets	with	an	Autostop
Condition
In	this	lab,	you	will	get	a	chance	to	use	Tshark	with	various	parameters.	We'll	define	file	set	"next	file"
parameters	and	include	an	autostop	condition	for	unattended	capture.

Step	1:	Open	the	command	prompt	(Windows)	or	a	terminal	window	(Linux/Macintosh).

Step	2:	Navigate	to	your	trace	file	directory.	Type	tshark	–D	to	view	the	list	of	available	interfaces.	If
you	aren't	certain	which	interface	sees	traffic,	return	to	Wireshark	and	select	Capture	|	Interfaces.

For	example,	below	we	compared	our	interface	list	in	Tshark	and	Wireshark	to	see	that	we	don't	want	to
capture	on	interface	number	3	because	there	isn't	any	traffic	visible	to	us	on	that	interface.	In	our	lab
example,	we	will	use	interface	number	4.	You	should	use	your	most	active	interface	as	you	follow	along.

Step	3:	Once	you	have	determined	which	interface	to	use,	type	tshark	–h	to	view	the	available	parameters
for	saving	to	multiple	files	and	setting	an	autostop	condition.

Look	at	the	Capture	stop	conditions	and	Capture	output	sections[56].	For	this	lab,	we	will	switch	to	the
next	file	after	30	seconds	and	stop	after	6	files	have	been	created.

We	will	need	to	use	the	following	parameters	during	this	capture	process:

		–i	4	to	capture	on	the	4th	interface
		–a	files:6	to	automatically	stop	capturing	after	6	files
		–b	duration:30	to	create	the	next	file	after	30	seconds
		–w	mytshark.pcapng	to	save	to	this	trace	file	name

Step	4:	At	the	command	line,	put	it	all	together	by	typing	tshark	–i4	–a	files:6	–b	duration:30	–
w	mytshark.pcapng	and	press	Enter.[57]

Open	your	browser	and	spend	some	time	browsing	www.wireshark.org.	Return	to	Wireshark.	Be	patient	if
the	capture	process	is	still	running.	It	may	take	longer	than	the	time	allocated	(3	minutes	in	this	case)	for
Wireshark	to	write	all	the	buffered	files.

Step	5:	Type	dir	mytshark*.*	to	view	your	files.	Notice	the	timestamp	detail	that	matches	your	setting	to
switch	to	the	next	file	after	30	seconds.

Spend	some	time	practicing	with	Tshark.	It's	best	to	be	comfortable	with	the	parameters	and	capabilities
of	Tshark	before	someone	comes	screaming	into	your	office	with	network	complaints[58].

If	you	use	the	same	parameters	and	a	very	long,	detailed	Tshark	string,	consider	building	a	batch	file
with	variables	to	reduce	the	chance	of	typing	mistakes.	For	example,	you	might	create	a	batch	file
called	t1.bat	that	contains	the	following:
tshark	–i%1	–a	files:6	–b	duration:30	–w	%2.pcapng

To	use	the	batch	file,	type	t1,	the	interface	number	(%1	variable)	and	file	stem	(%2	variable),	such	as
t1	4	test1.	This	will	capture	traffic	on	interface	4,	create	six	files	containing	30	seconds	of	traffic	each,
and	name	each	file	beginning	with	the	stem	test1_00000<date/timestamp>	through
test1_00005<date/timestamp>.

http://www.wireshark.org/

8.4.	Use	Capture	Filters	during	Command-Line
Capture
Use	capture	filters	with	dumpcap	or	Tshark	when	you	are	capturing	on	a	busy	network	or	you	just	want	to
focus	on	specific	traffic	during	the	capture	process,

Both	dumpcap	and	Tshark	use	the	–f	option	to	specify	a	capture	filter	using	the	capture	filter	(BPF)
format.	Use	the	–w	option	to	set	the	name	of	your	new	trace	file.	For	example,	if	you	are	interested	in
capturing	all	traffic	running	on	TCP	port	21,	enter	dumpcap	–i1	–f	"tcp	port	21"	–w	port21.pcapng,	as
shown	in	Figure	132.	You	will	have	to	manually	stop	the	capture	process	(Ctrl+C).

Figure	132.	You	will	need	to	manually	stop	the	capture	unless	you've	defined	a	stop	condition.

Capture	filtering	with	Tshark	uses	the	same	parameters.	For	example,	in	Figure	133	we	are	capturing	all
TCP	port	21	traffic	to	or	from	24.6.173.220	to	a	file	called	myport21.pcapng	using	the	-i,	-f,	and	–
w	parameters.

The	command	would	be	tshark	–i1	–f	"tcp	port	21	and	host	24.6.173.220"	–w	myport21.pcapng.	Capture
filters	can	be	combined	with	other	parameters.

Figure	133.	Both	Tshark	and	dumpcap	use	the	BPF	capture	filter	syntax.

Wireshark	doesn't	recognize	capture	filter	names,	such	as	NotMyMAC	(created	in	Lab	13).	Use	the
capture	filter	string	and	enclose	the	filter	string	in	quotes.	Quotes	are	necessary	if	you	have	spaces	in
your	filter,	as	we	see	in	Figure	133.

8.5.	Use	Display	Filters	during	Command-Line
Capture
Display	filters	have	many	more	options	than	capture	filters.	When	capturing	at	command	line,	however,
there	is	a	display	filter	limitation	that	you	must	be	aware	of.	You	can	use	display	filters	with	the	–R
parameter	during	a	live	capture,	but	you	can	cannot	save	the	trace	file	while	using	that	parameter.

Because	of	this	limitation,	consider	capturing	all	traffic,	save	the	packets	to	a	file	(or	file	sets	if
necessary),	apply	display	filters	to	the	saved	trace	file,	and	save	the	subset	to	a	new	trace	file.

If	you	want	to	capture	only	packets	that	match	the	tcp.analysis.flags	filter,	for	example,	first	use	a	capture
filter	to	capture	all	TCP	traffic	and	save	that	traffic	to	a	file.	In	Figure	134,	we	are	capturing	and	saving
TCP	traffic	to	a	file	called	tcptraffic.pcapng.	That	is	the	first	step.

Figure	134.	Begin	with	a	capture	filter	and	save	the	packets	to	a	file.

The	second	step	is	to	use	the	–r	parameter	to	read	the	trace	file	you	created,	the	ndash;R	parameter	to
specify	a	display	filter,	and	the	–w	parameter	to	save	a	new	trace	file,	as	shown	in	Figure	135.

Figure	135.	Use	the	–R	parameter	to	apply	display	filters	and	save	a	subset	of	the	packets.

In	Lab	45	you	will	use	the	–R	parameter	to	extract	HTTP	GET	requests	from	a	trace	file	and	save	these
GET	requests	in	a	new	trace	file.

	Lab	45:	Use	Tshark	to	Extract	HTTP	GET	Requests
In	this	lab	you	will	use	the	–r	parameter	to	read	a	trace	file	and	then	apply	a	display	filter	with	the	–R
parameter.	Finally	you	will	save	a	trace	file	that	contains	only	the	HTTP	GET	requests.

Step	1:	Open	the	command	prompt	(Windows)	or	a	terminal	window	(Linux/Macintosh).

Step	2:	Navigate	to	your	trace	file	directory.

Type	tshark	–r	"http-espn101.pcapng"	–R	"http.request.method=="GET""	–w	"httpGETs.pcapng"	and
press	Enter.

That's	it.	Now	you	can	open	your	trace	file	in	Wireshark	for	further	analysis.

The	best	way	to	use	display	filters	and	Tshark	is	to	capture	and	save	all	the	traffic	using	Tshark	and
then	open	the	trace	file	in	Wireshark	to	apply	display	filters	and	perform	analysis	tasks.

8.6.	Use	Tshark	to	Export	Specific	Field	Values
and	Statistics	from	a	Trace	File
Sometimes	you	may	want	to	get	a	general	feel	for	the	traffic	with	or	without	capturing	the	traffic.	This	is
where	Tshark	is	the	only	command-line	tool	to	use.

Run	tshark	–h	to	view	the	available	options.	Field	export	options	and	export	statistics	are	listed	under	the
Output	area.

Export	Field	Values
You	must	use	–T	fields	first.	Then	you	can	list	the	fields	you	are	interested	in	after	the	–e	parameter.	You
can	combine	these	parameters	with	display	filters	as	needed.	For	example,	in	Figure	136	we	typed	tshark
–i1	–f	"dst	port	80	and	host	24.6.173.220"	–T	fields	–e	frame.number	–e	ip.src	–e	ip.dst	–e
tcp.window_size	to	capture	traffic	to/from	24.6.173.220	to	port	80	on	interface	1	and	display	the	frame
number,	source	and	destination	IP	addresses,	and	TCP	window	size	value.

You	will	need	to	manually	stop	the	capture	process	using	Ctrl+C.	If	you	can't	manually	stop	the	process,
consider	adding	a	stop	condition	to	your	Tshark	command.

Figure	136.	You	will	need	to	manually	stop	the	capture	process

Use	the	–E	parameter	to	add	options	to	make	the	exported	information	easier	to	read.	For	example,	add	–
E	header=y	to	add	a	field	header.

To	analyze	the	information	in	a	spreadsheet	use	the	–E	separator=,	to	set	up	the	exported	information	in
comma-separated	format.

You	can	use	>	stats.txt	at	the	end	of	your	command	to	save	this	information	to	a	file	named	stats.txt.

Again,	use	tshark	–h	to	view	all	available	options.

Export	Traffic	Statistics
Use	the	–z	parameter	to	view	numerous	statistics	about	your	traffic.	You	might	also	consider	using	the	–q
parameter	to	quiet	down	Tshark	from	displaying	each	frame	on	the	screen.	For	example,	in	Figure	137	we
ran	tshark	–qz	io,phs	to	display	the	Protocol	Hierarchy	Statistics	(phs).

Figure	137.	We	can	see	the	various	protocols	and	applications	in	use	without	capturing	traffic.

If	you	want	to	export	any	of	the	statistics	to	a	text	file,	simply	redirect	the	results	to	a	file,	as	mentioned
earlier.	For	example,	tshark	–qz	io,phs	>	stats.txt.	As	you	continue	to	gather	statistics,	use	>>	instead	of	>
to	append	additional	information	to	the	existing	text	file.

One	of	the	most	interesting	statistics	is	the	list	of	hosts	that	are	communicating	on	the	network.	In	Figure
138,	we	typed	tshark	–qz	hosts	to	extract	the	list	of	active	hosts.

Figure	138.	It	is	easy	to	build	a	list	of	active	hosts	seen	on	the	network	using	tshark	–qz	hosts.

If	you	want	to	extract	the	Expert	warnings,	notes,	and	errors	from	an	existing	trace	file,	use	the	–r

parameter.	For	example,	in	Figure	139	we	typed	tshark	–r	"http–download101.pcapng"	–qz	expert,notes
to	see	we	have	packet	loss	and	a	zero	window	condition	in	the	trace	file.	If	you	are	only	interested	in
seeing	Expert	errors	and	warnings,	use	–qz	expert,warn.

Figure	139.	Pulling	the	expert	warnings,	we	can	see	some	indications	of	segments	not	captured.	[http–download101.pcapng]

See	www.wireshark.org/docs/man-pages/tshark.html	for	more	details	on	the	–z	parameter.

http://www.wireshark.org/docs/man-pages/tshark.html

Export	HTTP	Host	Field	Values
You	can	easily	use	Tshark	to	capture	all	the	HTTP	Host	field	values	currently	seen	on	the	network	and
save	that	information	to	a	text	file.	To	do	this,	include	a	display	filter	for	packets	that	contain	the	http.host
field.	In	addition,	define	http.host	as	the	exported	field	name	and	export	the	information	to	a	text	file.	In
Figure	140,	we	saved	the	HTTP	Host	field	values	to	a	file	called	httphosts.txt.

Figure	140.	We	used	a	display	filter	and	field	value	of	http.host	to	create	a	host	list	file.

The	resulting	text	file	only	includes	the	HTTP	Host	field	values,	as	shown	in	Figure	141.	We	could	add
another	field	parameter	to	save	the	destination	IP	address	(ip.dst),	as	well.	We	will	do	this	in	Lab	46.

Figure	141.	You	can	create	a	list	of	all	the	HTTP	Host	field	values	seen	in	the	trace	file.

	Lab	46:	Use	Tshark	to	Extract	HTTP	Host	Names	and	IP	Addresses
In	this	lab	we	will	use	a	combination	of	display	filters	and	field	names	to	create	a	file	that	contains	both
the	IP	addresses	and	host	names	of	HTTP	servers	contacted	on	the	network.

Step	1:	Open	the	command	prompt	(Windows)	or	a	terminal	window	(Linux/Macintosh).

Step	2:	Navigate	to	the	directory	in	which	you	want	to	save	your	new	HTTP	host	name/address	file.

Type	tshark	–i4	–R	"http.host	&&	ip"	–T	fields	–e	http.host	–e	ip.dst	–E	separator=,	>
httphostaddrs.txt	and	press	Enter.

Step	3:	Toggle	to	your	browser	and	visit	various	web	sites.	After	a	few	minutes,	toggle	back	to	your
command	prompt	or	terminal	window	and	manually	stop	the	capture	process	(Ctrl+C	on	windows,	for
example).

Wireshark	displays	the	captured	packet	count,	which	is	the	number	of	host	names	and	IP	addresses	you
have	in	your	text	file.

Step	4:	Open	and	examine	your	httphostaddrs.txt	file.

Practice	working	with	the	fields	and	filters	to	extract	just	the	information	in	which	you	are	interested.
Consider	creating	a	batch	file	or	script	to	run	Tshark	commands	you	use	often.

8.7.	Continue	Learning	about	Wireshark	and
Network	Analysis
By	this	point	you've	covered	the	most	important	Wireshark	skills	and	network	analysis	functions.	You've
run	through	46	labs	and	you're	about	to	finish	Challenge	8.	Once	that	is	complete,	what's	next?

Here	are	some	recommendations	for	continuing	your	education	in	network	analysis:

Visit	www.wiresharkbook.com	and	check	out	the	supplements	for	this	book	and	other	books	listed	on	that
site.

Visit	www.wireshark.org	to	sign	up	for	the	Wireshark-Announce	mailing	list	to	receive	notifications
when	a	new	Wireshark	version	is	available	for	download.
Sign	up	for	the	newsletter	at	www.chappellU.com	to	participate	in	free	online	Wireshark	events.
Practice	capturing	your	own	traffic	to	become	accustomed	to	the	type	of	traffic	that	is	generated
when	you	browse	web	sites,	send	email,	or	login	to	the	company	server.
Continue	customizing	Wireshark	by	adding	new	profiles	and	new	display	filters,	coloring	rules,	and
Filter	Expression	buttons.
Share	your	customized	settings	with	other	IT	team	members	to	create	a	master	profile	that	improves
your	team's	network	analysis	efficiency.

As	you've	read	on	the	title	page	for	each	chapter,	there	are	many	benefits	to	becoming	proficient	at
network	analysis.	Now	is	the	time	to	start	delving	into	your	network	traffic	to	spot	problems	and	detect
those	network	anomalies	faster.

http://www.wiresharkbook.com/
http://www.wireshark.org/
http://www.chappellu.com/

Chapter	8	Challenge
Use	challenge101-8.pcapng	and	the	command-line	tool	techniques	covered	in	this	chapter	to	answer
these	Challenge	questions.	The	answer	key	is	located	in	Appendix	A.

Question	8-1.
What	Tshark	parameter	should	you	use	to	list	active	interfaces	on	your	Wireshark	system?

Question	8-2.
Using	Tshark	to	extract	protocol	hierarchy	information,	how	many	UDP	frames	are	in	challenge101-
8.pcapng?

Question	8-3.
Use	Tshark	to	export	all	DNS	packets	from	challenge101-8.pcapng	to	a	new	trace	file	called
ch8dns.pcapng.	How	many	packets	were	exported?

Appendix	A:	Challenge	Answers

"Now	that	you	know,	share.	Share	the	knowledge	with	others.	Take	five	minutes	to	teach	someone
something	cool	that	you	learned	that	could	end	their	networking	nightmare.	I	will	never	forget	the	first

person	that	introduced	me	to	Wireshark	and	I	am	forever	grateful.	Be	that	first	for	someone."

Jennifer	Keels
CNP-S,	CEH,	Network	Engineer

Chapter	0	Challenge	Answers
Answer	0-1.
The	Status	Bar	indicates	this	trace	file	contains	20	frames.

Answer	0-2.
The	Source	and	Destination	columns	indicate	this	TCP	connection	is	between	192.168.1.108	and
50.19.229.205.

Answer	0-3.
Frame	4	is	an	HTTP	GET	request.

Answer	0-4.
Sorting	on	the	Length	column	(or	even	just	scrolling	through	the	file	and	looking	at	the	Length	column)
indicates	the	largest	frame	is	1,428	bytes.

Answer	0-5.
Wireshark	displays	only	HTTP	and	TCP	in	the	Protocol	column.

Answer	0-6.
The	HTTP	server	sends	302	Found	responses	(frames	6,	8,	10,	13,	and	16).

Answer	0-7.
There	are	no	IPv6	packets	in	this	trace	file—the	Source	and	Destination	columns	only	display	IPv4
addresses.

Chapter	1	Challenge	Answers
Answer	1-1.
In	order	to	see	the	default	page	("/")	request,	you	must	add	port	87	in	the	HTTP	preference	setting	(Edit	|
Preferences	|	(+)	Protocols	|	HTTP).

You	may	need	to	click	the	reload	button	 	on	the	main	toolbar	to	apply	your	new	setting	to	the	trace	file.

We	can	now	see	frame	13	is	the	GET	request	for	the	default	page.

Answer	1-2.
In	frame	17,	the	server	responds	with	200	OK.

Answer	1-3.
In	order	to	view	the	TCP	delta	time,	we	must	enable	the	Calculate	conversation	timestamps	TCP
preference	(Edit	|	Preferences	|	(+)	Protocols	|	TCP).	Then	we	can	right-click	on	the	new	"Time	since
previous	frame	in	this	TCP	stream"	line	at	the	end	of	the	TCP	header,	select	Apply	as	Column,	and
click	twice	on	the	new	column's	heading	to	sort	from	high	to	low.	Frame	285	contains	the	largest	TCP
delta	time,	15.438012000	seconds.

Answer	1-4.
Based	on	the	TCP	Delta	column	sorted	in	Question	1-3,	we	can	look	in	the	Info	column	and	TCP	Delta
column	to	see	how	many	SYN	packets	have	a	value	greater	than	1	second.	Four	SYN	packets	arrived	after
at	least	a	1	second	delay	(frames	3,	6,	2,	and	5	in	that	order).	This	is	a	sign	that	there	are	problems
connecting	to	a	TCP	peer.

Chapter	2	Challenge	Answers
Answer	2-1.
First	you	configured	Wireshark	to	automatically	capture	only	your	traffic	to	and	from	port	80	and	save	the
traffic	to	a	file	named	mybrowse.pcapng.	An	example	Capture	Options	window	is	shown	below.	No
ICMP	traffic	was	captured.

Answer	2-2.
After	pinging	and	browsing	to	www.chappellU.com,	you	should	only	have	captured	your	traffic	to	or	from
port	80.	The	Protocol	column	will	only	list	TCP	and	HTTP	traffic.

Answer	2-3.
Now	you	should	have	configured	Wireshark	to	automatically	capture	and	save	all	your	ICMP	traffic	to	a
file	called	myicmp.pcapng.	An	example	Capture	Options	window	is	shown	below.

After	you	pinged	and	browsed	to	www.chappellU.com	again,	you	should	have	seen	that	the	trace	file	only
contains	ICMP	traffic	based	on	your	capture	filter.	How	many	ICMP	packets	you	captured	depends	on	the
amount	of	ICMP	traffic	generated	by	your	ping	application	and	any	background	ICMP	traffic	generated
during	your	capture	process.

Answer	2-4.
If	you	look	inside	the	ICMP	portion	of	the	packets,	you	should	see	Type	8/Code	0	(Echo	request)	and
Type	0/Code	0	(Echo	reply).	In	the	image	below	we	right–clicked	on	the	ICMP	Type	field	and	selected
Apply	as	Column.

Chapter	3	Challenge	Answers
Answer	3-1.
Using	the	filter	ip.addr==80.78.246.209,	we	determined	that	32	packets	traveled	to	or	from
80.78.246.209.

Answer	3-2.
Based	on	a	dns	filter,	we	determined	that	there	are	8	DNS	packets	in	the	trace	file.

Answer	3-3.
Based	on	a	tcp.flags.syn==1	filter,	we	determined	that	there	are	12	TCP	packets	with	the	TCP	SYN	flag
set	on	in	this	trace	file.

Answer	3-4.

Based	on	a	frame	matches	"(?i)set-cookie"	filter,	we	determined	that	three	packets	contained	this	string.
We	disabled	Allow	subdissector	to	reassemble	TCP	streams	in	TCP	Preferences	in	order	to	see	the
response	code	200	OK	in	frame	9.

Answer	3-5.
Based	on	a	tcp.time_delta	>	1	filter,	we	determined	that	18	TCP	frames	arrived	with	over	a	1	second
delay	preceding	them.

Chapter	4	Challenge	Answers
Answer	4-1.
Frame	170	matches	the	Bad	TCP	coloring	rule	that	looks	for	TCP	analysis	flagged	packets	(except
Window	Update	packets).

Answer	4-2.
We	applied	a	filter	for	tcp.stream==5	and	then	right-clicked	on	one	line	in	the	Packet	List	pane.	We
selected	Colorize	Conversation	|	TCP	and	selected	Color	6.	This	TCP	stream	contains	13	frames.

Answer	4-3.
We	created	a	coloring	rule	using	the	string	tcp.time_delta	>	100.	We	used	the	same	string	as	a	display
filter	and	found	9	frames	matched	this	filter.	One	packet	still	retained	our	temporary	coloring	rule	from
Question	4-2.

Answer	4-4.
After	creating	a	TCP	Delta	column,	we	selected	File	|	Export	Packet	Dissections	|	as	"CSV"	format.
We	selected	to	export	the	captured	packets	and	only	the	Packet	summary	line.

We	opened	the	.csv	file	in	Excel	and	determined	the	average	value	of	the	exported	TCP	Delta	column	as
115.2703762.

Chapter	5	Challenge	Answers
Answer	5-1.
We	selected	Statistics	|	IO	Graph	and	used	the	default	Packets/Tick	unit	in	the	Y	axis.	The	highest
packets-per-second	value	seen	in	this	trace	file	is	approximately	90	packets	per	second.

Answer	5-2.
After	changing	the	Y	axis	to	Bits/Tick,	we	can	see	the	highest	bits-per-second	value	seen	in	this	trace	file
is	approximately	630,000	bits	per	second.

Answer	5-3:
Selecting	Statistics	|	Conversations	|	TCP,	we	can	see	there	is	only	one	TCP	conversation	in	the	trace
file.

Answer	5-4.
After	clicking	the	Warnings	tab	in	the	Expert	Infos	window,	we	can	see	there	are	a	total	of	172	Previous
segment	not	captured	indications.	Most	likely	an	interconnecting	device	along	a	path	is	dropping	packets.

Answer	5-5.
Clicking	on	the	Notes	tab,	we	can	see	there	are	a	total	of	198	Retransmissions	and	Fast	retransmissions
combined.	These	are	the	recovery	processes	for	packet	loss.

Chapter	6	Challenge	Answers
Answer	6-1.
First	we	made	certain	that	the	TCP	Allow	subdissector	to	reassemble	TCP	streams	preference	is	enabled.
Then	we	selected	File	|	Export	Objects	|	HTTP	to	find	out	which	HTTP	objects	were	transferred	in	the
trace	file.	The	two	.jpg	files	are	sample2b.jpg	and	featureb.jpg.

Answer	6-2.
Scrolling	down	in	the	HTTP	object	list,	we	see	next-active.png	listed	with	arbornetworks.com.

When	you	click	on	this	entry	to	jump	to	packet	1,214,	however,	we	see	a	301	Moved	Permanently
response	indicating	the	file	is	at
http://www.arbornetworks.com/modules/mod_arborslideshow/tmpl/img/icon/slider/next-active.png.

Answer	6-3.
We	selected	booksmall.png	and	selected	Save	As.	This	file	depicts	the	top	half	of	the	Wireshark
Network	Analysis	book	on	an	orange	background.

Answer	6-4.
We	filtered	the	trace	file	on	tcp.stream	eq	7	before	right-clicking	on	a	frame	and	selecting	Follow	TCP

stream.	This	client	is	using	Firefox	to	browse	www.wiresharktraining.com	in	this	conversation.

Chapter	7	Challenge	Answers
Answer	7-1.
We	clicked	on	the	trace	file	Annotation	button	on	the	Status	Bar	to	see	a	copyright	notice	and	some	basic
information	about	the	trace	file.

Answer	7-2.
We	clicked	on	the	Expert	Infos	button	on	the	Status	Bar	and	then	the	Packet	Comments	tab	to	view	three
packet	comments.

Answer	7-3.
We	applied	a	filter	for	http.request.method	contains	"POST"	to	find	the	POST	packet	(938).	Then	we
right-clicked	on	that	packet	and	selected	Edit	or	Add	Packet	Comment	before	typing	in	our	message.

The	filter	http.request.method=="POST"	or	even	http.request.method	matches	"POST"	would	have
worked	as	well.

Chapter	8	Challenge	Answers
Answer	8-1.
You	should	use	the	–D	parameter	to	list	active	interfaces	on	your	Wireshark	system.

Answer	8-2.
Using	tshark	–r	challenge101-8.pcapng	–qz	io,phs,	we	determined	that	there	are	62	UDP	frames	in
challenge101-8.pcapng.

Answer	8-3.
Using	the	command	tshark	–r	challenge101-8.pcapng	–R	"dns"	–w	ch8dns.pcapng,	we	exported	the	DNS
traffic	and	found	that	there	are	62	DNS	packets.	Apparently	all	the	UDP	traffic	is	DNS.

We	could	have	used	capinfos	ch8dns.pcapng	to	obtain	the	packet	count	as	well.

Appendix	B:	Trace	File	Descriptions

"Protocol	Analysis	is	the	only	way	to	really	see	how	applications	and	networks	behave.	Unfortunately
the	tools	are	only	as	good	as	the	training	and	knowledge	you	gain.	More	practice	=	more	knowledge."

Tony	Fortunato
Senior	Network	Performance	Specialist,	The	Technology	Firm

and	Wireshark	University	Certified	Instructor

Practice	Trace	Files

The	book	web	site	(www.wiresharkbook.com)	contains	all	the	trace	files	mentioned	in	this	book.	Please
note	the	license	for	use	below	and	on	the	book	web	site.

You	agree	to	indemnify	and	hold	Protocol	Analysis	Institute	and	its	subsidiaries,	affiliates,	officers,
agents,	employees,	partners	and	licensors	harmless	from	any	claim	or	demand,	including	reasonable
attorneys'	fees,	made	by	any	third	party	due	to	or	arising	out	of	your	use	of	the	included	trace	files,	your
violation	of	the	TOS,	or	your	violation	of	any	rights	of	another.

NO	COMMERCIAL	REUSE

You	may	not	reproduce,	duplicate,	copy,	sell,	trade,	resell,	or	exploit	for	any	commercial	purposes,	any	of
the	trace	files	available	at	www.wiresharkbook.com.

dhcp-serverdiscovery101.pcapng—This	trace	file	only	contains	DHCP	traffic.	Note	that	the	display
filter	required	to	view	DHCP	traffic	is	simply	bootp.	[Chapter	3]

dns-nmap101.pcapng—We	saved	the	DNS	traffic	from	a	browsing	session	that	included	an	attempt	to
reach	www.nmap.org	and	www.insecure.org	(both	managed	by	Fyodor,	the	creator	of	Nmap)	as	well	as
google.com	and	dropbox.com.	It	seems	there	are	some	DNS	problems	that	will	prevent	us	from	getting	to
Fyodor's	sites.	[Chapter	1]

ftp-clientside101.pcapng—Wireshark	is	running	on	a	client	to	capture	the	FTP	command	and	data
channel	traffic	seen	in	this	trace	file.	The	user	name	and	password	are	visible	in	clear	text.	We	can	use
Follow	TCP	Stream	to	reassemble	the	file	transferred	in	this	trace	file.	[Chapter	3	and	6]

ftp-crack101.pcapng—We	started	capturing	in	the	middle	of	a	password	cracking	attempt.	This	is	a	good
trace	file	on	which	to	practice	keyword	filtering.	Was	the	password	cracking	attempt	successful?	[Chapter
3	and	Chapter	4]

ftp-download101.pcapng—The	FTP	banner	is	quite	evident	in	the	Packet	List	pane	of	this	trace	file.
Follow	the	stream	of	the	command	channel	to	see	what	the	client	wants	from	the	server.	Practice	finding
the	most	active	conversations	based	on	bytes	and	applying	a	filter	for	that	traffic.	[Chapter	6]

general101.pcapng—This	is	the	trace	file	we	followed	to	build	a	picture	of	a	network.	We	examined	the
MAC	addresses	and	IP	addresses	contained	in	the	trace	file.	[Chapter	0]

general101b.pcapng—An	outside	host	(121.125.72.180)	and	an	inside	host	(24.6.169.43)	are	trying	to
make	a	connection	to	a	local	host.	Consider	building	a	display	filter	for	all	TCP	SYN	packets	to	detect
connection	attempts	and	responses.	[Chapter	3	and	Chapter	5]

general101c.pcapng—We	used	this	trace	file	to	detect	suspicious	traffic	on	a	network.	Look	at	the
Protocol	Hierarchy	to	identify	the	IRC	traffic	and	use	Follow	TCP	Stream	to	reassemble	the	traffic	and
identify	commands.	What	is	the	name	of	the	IRC	server?	[Chapter	5]

general101d.pcapng—This	trace	file	contains	numerous	TCP	problems.	Open	the	Expert	Infos	window
to	identify	the	problems	on	this	network.	[Chapter	5]

gen-startupchatty101.pcapng—We	used	this	trace	file	to	examine	conversation	statistics.	The	trace	file
contains	15	IPv4	conversations	and	12	IPv6	conversations.	Although	there	are	only	6	TCP	conversations,
there	are	52	UDP	conversations.	[Chapter	3]

http://www.wiresharkbook.com/
http://www.wiresharkbook.com/

http-au101b.pcapng—We	used	this	trace	file	to	track	a	web	browsing	session	and	export	the	HTTP	Host
field	values.	We	then	exported	the	Packet	List	pane	columns	to	a	CSV	file	for	further	processing.	[Chapter
4]

http-browse101.pcapng—This	trace	file	contains	a	web	browsing	session.	This	is	a	good	trace	file	to
use	to	practice	adding	columns	or	filtering	on	DNS	traffic	to	identify	web	site	dependencies.	[Chapters	3,
4	and	6]

http-browse101b.pcapng—This	trace	file	contains	IPv4	and	IPv6	traffic.	We	used	this	trace	file	to
examine	the	Protocol	Hierarchy	window.	[Chapters	5]

http-browse101c.pcapng—This	trace	file	contains	traffic	between	a	host	in	the	United	States	and	hosts	in
China.	This	is	a	great	trace	file	to	use	when	practicing	GeoIP	mapping.	[Chapter	5]

http-browse101d.pcapng—This	trace	file	contains	numerous	intertwined	conversations.	Practice
differentiating	the	conversations	by	applying	temporary	coloring	rules	to	the	separate	conversations.
[Chapter	4]

http-chappellu101.pcapng—This	trace	file	contains	a	very	simple	web	browsing	session.	Use	this	file	to
practice	reassembling	web	objects.	[Chapter	1]

http-chappellu101b.pcapng—In	this	browsing	session,	the	user	decided	to	open	a	PDF	file	located	on
the	web	site.	Looking	closely	at	the	trace	file	we	can	see	the	browser	used	an	external	PDF	viewing
software.	Checking	in	to	that	viewer	site,	we	detected	a	404	error.	[Chapter	3]

http-cheez101.pcapng—This	trace	file	depicts	a	browsing	session	to	the	infamous	cheezburger.com	site.
Try	opening	this	trace	file	with	the	TCP	Allow	subdissector	to	reassemble	TCP	streams	preference
enabled	and	disabled.	You	can	see	the	difference	in	frame	10.	[Chapter	7]

http-college101.pcapng—This	is	another	good	trace	file	that	contains	a	large	number	of	connections
required	to	browse	a	single	web	site.	Peruse	through	the	GET	requests	to	see	some	interesting	.jpg	file
names.	[Chapter	6]

http-disney101.pcapng—It's	the	"happiest	place	on	Earth"...	if	you	can	get	there.	This	trace	file	depicts
DNS	errors	that	are	slowing	down	the	browsing	session.	[Chapters	1,	3,	and	8]

http-download101.pcapng—This	trace	file	contains	some	very	serious	TCP	problems.	Use	the	Expert
Infos	window	to	identify	the	errors.	Pay	attention	to	the	packet	time	information	to	determine	how	heavily
these	errors	affected	performance.	[Chapters	5	and	8]

http-download101c.pcapng—Filter	on	the	GET	requests	to	see	what	the	client	is	downloading	in	this
trace	file.	Consider	creating	a	coloring	rule	based	on	your	findings.	[Chapter	8]

http-download101d.pcapng—There	are	numerous	problems	in	this	trace	file.	Create	an	IO	Graph	that
compares	all	traffic	with	the	TCP	analysis	flagged	packets.	[Chapter	3]

http-download101e.pcapng—Again,	we	have	errors	in	the	trace	file	that	are	affecting	the	throughput.
Create	another	IO	Graph	with	the	TCP	analysis	flagged	packets.	You	probably	need	to	set	the	Y	axis	to
logarithmic	to	see	the	relationship	between	TCP	errors	and	drops	in	throughput.	[Chapter	5]

http-errors101.pcapng—In	this	trace	file	a	user	is	trying	to	load	a	page	that	does	not	exist.	Practice
setting	up	coloring	rules	for	HTTP	error	response	codes	using	this	trace	file.	[Chapter	3]

http-espn101.pcapng—When	you	browse	to	www.espn.com,	you	will	find	that	there's	nothing	there.	This
trace	file	shows	the	interdependencies	between	web	sites.	You	may	think	you	are	connecting	to	a	single
site,	when	you	are	actually	connecting	to	multiple	sites.	[Chapters	1,	3,	5,	6,	and	8]

http-google101.pcapng—In	this	trace	file	we	received	IPv4	and	IPv6	addresses	in	response	to	our	DNS
queries.	Did	any	of	our	communications	travel	over	IPv6?	[Chapter	0]

http-jezebel101.pcapng—Look	in	the	Frame	section	in	this	trace	file.	It	was	taken	the	day	after
Hurricane	Sandy	hit	the	East	Coast	of	the	United	States.	Numerous	servers	on	the	East	Coast	were
knocked	out	by	the	floods.	This	site,	jezebel.com,	was	hosted	on	a	Datagram	server	that	was	located	in	a
flooded	basement.	Reassemble	the	TCP	streams	to	clearly	read	the	responses	from	the	temporary	server
to	which	traffic	was	directed.	[Chapter	4]

http-misctraffic101.pcapng—Try	to	reassemble	the	executable	transferred	during	this	web	browsing
session.	It	is	fully	functional,	but	it	may	not	be	the	latest	copy	available.	[Chapters	4	and	5]

http-nonstandard101.pcapng—In	this	trace	file	we	have	HTTP	traffic	traveling	over	a	non-standard	port
number.	You	can	adjust	the	HTTP	preference	settings	to	dissect	this	traffic	properly.	[Chapter	1]

http-openoffice101a.pcapng—This	trace	file	depicts	a	slow	server	response.	Use	the	Time	column	and
the	TCP	Calculate	conversation	timestamps	feature	to	determine	the	length	of	the	delay.

http-openoffice101b.pcapng—During	this	OpenOffice	download,	the	client	terminates	the	connection	to
the	server.	It	takes	the	server	a	while	to	receive	the	TCP	Resets,	however,	so	the	trace	file	ends	with	a
number	of	unacknowledged	data	packets.	[Chapter	1]

http-pcaprnet101.pcapng—There	is	a	noticeable	delay	when	accessing	pcapr.net	information.	Use	the
Time	column	and	the	TCP	conversation	timestamp	details	to	analyze	the	performance	of	this	browsing
session.	[Chapter	1]

http-pictures101.pcapng—We	are	browsing	for	images	at	istockphoto.com.	Practice	exporting	HTTP
objects	using	this	file.	Can	you	tell	what	search	term	we	used	on	the	iStockphoto	site?	[Chapter	3]

http-sfgate101.pcapng—This	trace	file	contains	a	browsing	session	to	sfgate.com,	an	online	newspaper
owned	by	the	Hearst	Corporation.	Use	your	HTTP	filtering	capabilities	to	detect	the	POST	message.
[Chapters	3	and	4]

http-slow101.pcapng—This	trace	file	depicts	a	really	slow	communication	between	an	HTTP	client	and
a	server.	It's	a	great	trace	file	to	practice	your	"high	latency"	coloring	rules	and	display	filters.
[Chapter	1]

http-winpcap101.cap—This	file	was	captured	with	Microsoft's	Network	Monitor.	Wireshark	can	open
the	trace	file	easily	using	Wireshark's	Wiretap	Library.	[Chapter	0]

http-wiresharkdownload101.pcapng—Use	this	trace	file	to	compare	the	results	of	an	http	filter	with	a
tcp.port==80	filter.	Notice	the	value	of	the	Protocol	column	as	you	apply	these	filters.	[Chapters	3	and	6]

mybackground101.pcapng—This	trace	file	was	taken	to	determine	what	background	traffic	occurs	on	a
lab	system.	As	we	removed	"normal"	traffic	from	view,	we	detected	an	incoming	connection	attempt	from
a	foreign	host.	[Chapters	0	and	Chapter	3]

sec-concern101.pcapng—This	trace	file	contains	some	very	unsettling	traffic.	Open	the	Protocol
Hierarchy	window	and	export	the	suspicious	traffic	to	get	a	better	feel	for	what	is	taking	place.	[Chapter

5]

sec-nessus101.pcapng—This	trace	file	depicts	a	Nessus	scan.	You'll	notice	a	wide	range	of	colors
applied	to	the	packets	and	a	very	interesting	Protocol	Hierarchy	view.	[Chapter	4]

sec-suspicous101.pcapng—This	browsing	session	illustrates	a	redirection	to	a	cz.cc	site.	Note	that	in
2011,	Google	blacklisted	all	sites	under	the	cz.cc	domain	stating	"Over	the	past	90	days,	cz.cc	appeared
to	function	as	an	intermediary	for	the	infection	of	13788	site(s)	including	uniform-net.jp/,	nuxi-navi.com/,
flashracingonline.com/."	[Chapter	7]

smb-join101.pcapng—This	trace	contains	the	SMB	traffic	from	a	Windows	host	that	joins	a	domain.	Use
this	trace	file	to	test	your	coloring	rule	or	display	filter	for	SMB	errors.	[Chapter	3]

tcp-decodeas.pcapng—This	traffic	runs	over	a	non-standard	port	number.	In	fact,	Wireshark	does	not
have	a	dissector	for	the	port	used.	Follow	the	stream	to	figure	out	what	the	traffic	is	and	then	force	a
dissector	using	right-click	Decode	As.	[Chapter	1]

wlan-ipadstartstop101.pcapng—This	trace	file	contains	the	802.11	traffic	from	an	iPad	during	the
startup	and	shut	down	procedure.	This	trace	file	was	taken	with	an	AirPcap	adapter	and	includes	a
Radiotap	header.	The	data	is	not	visible	because	the	traffic	is	encrypted.	[Chapter	3]

Network	Analyst's	Glossary
Note:	This	Glossary	defines	terms	as	they	relate	to	network	analysis	and	Wireshark	functionality.

6to4	traffic—6to4	traffic	contains	IPv6	packets	embedded	inside	IPv4	headers.	These	packets	can	be
routed	through	an	IPv4	network	to	a	target	IPv6	host.	Apply	a	display	filter	for	ip	and	ipv6	to	detect
traffic	that	contains	both	protocols.

ACK—Short	for	Acknowledgement,	this	term	is	used	to	refer	to	the	packets	that	are	sent	to	acknowledge
receipt	of	some	packet	on	a	TCP	connection.	For	example,	a	handshake	packet	(SYN)	containing	an	initial
sequence	number	is	acknowledged	with	SYN/ACK.	A	data	packet	would	also	be	acknowledged.

AirPcap—This	specialized	wireless	adapter	was	originally	created	by	CACE	Technologies	(now	owned
by	Riverbed)	to	capture	wireless	network	traffic.	Designed	to	work	on	Windows	hosts,	this	adapter	can
capture	traffic	in	promiscuous	mode	(capture	traffic	sent	to	all	target	hardware	addresses,	not	just	the
local	hardware	address)	and	monitor	mode	(capture	traffic	on	all	wireless	networks	by	not	joining	any
wireless	network).	For	more	information,	visit	www.riverbed.com.

Annotations—As	of	Wireshark	1.8,	annotations,	or	comments,	can	be	added	to	an	entire	trace	file	or	to
individual	packets.	Trace	file	annotations	can	be	seen	by	clicking	on	the	Annotation	button	on	the	Status
Bar	or	by	selecting	Statistics	|	Summary.	Packet	annotations	can	be	seen	above	the	Frame	section	of	a
packet	in	the	Packet	Details	pane	or	by	opening	the	Expert	Infos	window	and	selecting	the	Packet
Comments	tab.	The	display	filter	comment	will	show	you	all	packets	that	contain	comments.	Add	this	as
a	column	to	read	all	comments	in	the	Packet	List	pane.

Apply	as	Filter—After	right-clicking	on	a	field,	conversation,	endpoint,	or	protocol/application	you	can
apply	a	display	filter	immediately	using	this	option.

ARP	(Address	Resolution	Protocol)—ARP	packets	are	sent	to	determine	if	someone	is	using	a
particular	IP	address	on	a	network	(gratuitous	ARP)	or	to	locate	a	local	host's	hardware	address	(ARP
requests/replies).	Both	the	capture	and	display	filters	for	ARP	are	simply	arp.

ASCII	(American	Standard	Code	for	Information	Interchange)–ASCII	is	a	character	encoding
mechanism	seen	in	the	Packet	Bytes	pane.	When	you	highlight	a	text	field	in	the	Packet	Details	pane,	the
hex	and	ASCII	location	of	that	field	is	highlighted	in	the	Packet	Bytes	pane.

background	traffic—This	traffic	type	occurs	with	no	user-intervention.	Typical	background	traffic	may
include	virus	detection	tool	updates,	OS	updates,	and	broadcasts,	or	multicasts	from	other	devices	on	the
network.	Start	capturing	traffic	on	your	own	computer	and	then	walk	away.	Let	the	capture	run	for	a	while
to	get	a	baseline	of	your	machine's	background	traffic.

Berkeley	Packet	Filtering	(BPF)	Syntax—This	is	the	syntax	used	by	Wireshark	capture	filters.	This
filtering	format	was	originally	defined	for	tcpdump,	a	command-line	capture	tool.	For	more	information
on	Wireshark	capture	filter	syntax,	see	wiki.wireshark.org/CaptureFilters.

Bootstrap	Protocol,	see	BOOTP

BOOTP	(Bootstrap	Protocol)—This	protocol	offered	static	address	assignment	and	is	the	predecessor
of	DHCP	(Dynamic	Host	Configuration	Protocol).	BOOTP	offers	dynamic	address	assignment.	IPv4
DHCP	packets	contain	a	BOOTP	header	and	can	be	filtered	on	using	the	bootp	display	filter	for	DHCPv4
and	dhcpv6	for	DHCPv6.	Also	see	DHCP.

http://www.riverbed.com/
http://wiki.wireshark.org/CaptureFilters

broadcast—Broadcast	is	a	type	of	address	that	indicates	"everyone"	on	this	network.	The	Ethernet	MAC-
layer	broadcast	address	is	0xFF:FF:FF:FF:FF:FF.	The	IPv4	broadcast	address	is	255.255.255.255
whereas	a	subnet	broadcast	would	be	10.2.255.255	on	network	10.2.0.0.	Broadcasts	to	the
255.255.255.255	address	are	not	forwarded	by	routers,	but	they	are	forwarded	out	all	switch	ports.
Subnet	broadcasts	may	be	forwarded	by	a	router	if	that	router	is	configured	to	do	so.

Capinfos–This	command-line	tool	is	included	in	the	Wireshark	download	and	can	be	used	to	obtain	basic
information	about	a	trace	file	such	as	file	size,	capture	duration	and	checksum	value.	If	you	are	going	to
use	a	trace	file	as	evidence	of	a	security	breach,	consider	obtaining	file	checksum	values	immediately
after	saving	trace	files	to	prove	the	trace	file	has	not	been	tampered	with.	The	command	capinfos	–H
<filename>	will	generate	SHA1,	RMD160	and	MD5	checksum	values	only	whereas	capinfos	<filename>
will	generate	checksum	values	as	well	as	all	other	file	information.

Capture	Engine–The	Capture	Engine	is	responsible	for	working	with	the	link	layer	interfaces	for	packet
capture.	Wireshark	uses	dumpcap.exe	for	the	actual	capture	process.

capture	filter—This	is	a	filter	that	is	applied	during	the	capture	process	only.	This	filter	cannot	be
applied	to	saved	trace	files.	Use	this	filter	type	sparingly	as	you	can't	retrieve	and	analyze	the	traffic	you
drop	with	a	capture	filter.		Use	the	–f	parameter	to	apply	capture	filters	with	Tshark	and	dumpcap.

capture	interface—The	capture	interface	is	the	hardware	device	upon	which	you	can	capture	traffic.	To
view	available	capture	interfaces,	click	on	the	Interfaces	button	on	the	main	toolbar.	If	Wireshark	does
not	see	any	interfaces,	you	cannot	capture	traffic.	Most	likely	the	link-layer	driver	(libpcap,	WinPcap,	or
AirPcap)	did	not	load	properly.

Cascade	Pilot®—The	traffic	visualization	tool	created	by	Loris	Degioanni.	Cascade	Pilot	can	open,
analyze,	and	visually	represent	very	large	trace	files	with	ease.	In	addition,	Cascade	Pilot	can	build
reports	based	on	the	charts	and	graphs,	and	export	key	traffic	elements	to	Wireshark	for	further	analysis.
For	more	information	on	Cascade	Pilot,	see	www.riverbed.com.

checksum	errors—When	you	enable	checksum	validation	for	IP,	UDP,	or	TCP	in	the	protocol
preferences	area,	Wireshark	calculates	the	checksum	values	in	each	of	those	headers.	If	the	checksum
value	is	incorrect,	Wireshark	marks	the	packet	with	a	checksum	error.	Since	so	many	machines	support
checksum	offloading,	it	is	not	uncommon	to	see	outbound	packets	marked	with	a	bad	checksum	because
the	checksum	hasn't	been	applied	yet.	Turn	off	checksum	validation	and/or	disable	the	Bad	Checksum
coloring	rule	to	remove	these	false	positives.	See	also	task	offloading.

CIDR	(Classless	Interdomain	Routing)	Notation—This	is	a	way	of	representing	the	network	portion	of
an	IP	address	by	appending	a	bit	count	value.	This	value	indicates	the	number	of	bits	that	comprise	the
network	portion	of	the	address.	For	example,	130.57.3.0/24	indicates	that	the	network	portion	of	the
address	is	24-bits	long	(130.57.3).

Classless	Interdomain	Routing,	see	CIDR	Notation

Comma-Separated	Value	format,	see	CSV	format

comparison	operators—Comparison	operators	are	used	to	look	for	a	value	in	a	field.	For	example,
ip.addr==10.2.2.2	uses	the	"equal"	comparison	operator.	Other	comparison	operators	include	>,	>=,	<,
<=,	and	!=.

core	engine—This	area	of	the	Wireshark	application	is	considered	the	"work	horse"	of	Wireshark.

http://www.riverbed.com/

Frames	come	into	the	capture	engine	from	the	Wiretap	Library	or	from	the	Capture	Engine.	Packet
dissectors,	display	filters,	and	plugins	all	work	as	part	of	the	Core	Engine.

CSVformat—Saving	to	CSV	format	is	available	when	exporting	packet	dissections.	Using	this	format,
Wireshark	can	export	all	Packet	List	pane	column	information	for	evaluation	by	another	program,	such	as
a	spreadsheet	program.

delta	time	(general)—This	time	value	measures	the	elapsed	time	from	the	end	of	one	packet	to	the	end	of
the	next	packet.	Set	the	Time	column	to	this	measurement	using	View	|	Time	Display	Format	|	Seconds
since	previous	packet.	This	field	is	inside	the	Frame	section	of	the	Packet	Details	pane	(called	Time
delta	from	previous	displayed	frame).

delta	time	(TCP)—This	time	value	can	be	enabled	in	TCP	preferences	(Calculate	conversation
timestamps)	and	provides	a	measurement	from	the	end	of	one	TCP	packet	in	a	stream	to	the	end	of	the
next	TCP	packet	in	that	same	stream.	The	field	is	added	to	the	end	of	the	TCP	header	in	the	[Timestamps]
section.	To	filter	on	high	TCP	delta	times,	use	tcp.time_delta	>	x,	where	x	is	a	number	of	seconds
(x.xxxxxx	format	is	supported	as	well).

DHCP	(Dynamic	Host	Configuration	Protocol)—This	protocol	is	used	to	dynamically	assign	IP
addresses	and	other	characteristics	to	IP	clients.	The	capture	filter	for	IPv4	DHCP	traffic	is	port	67
(alternately	you	can	use	port	68).	The	display	filter	for	IPv4	DHCP	traffic	is	bootp.	The	capture	filter	for
DHCPv6	traffic	is	port	546	(alternately	you	can	use	port	547).	The	display	filter	for	DHCPv6	traffic	is
dhcpv6.

Dynamic	Host	Configuration	Protocol,	see	DHCP

Differentiated	Services	Code	Point,	see	DSCP

display	filter—This	filter	can	be	applied	during	a	live	capture	or	to	a	saved	trace	file.	Display	filters	can
be	used	to	focus	on	specific	types	of	traffic.	Wireshark's	display	filters	use	a	proprietary	format.	Display
filters	are	saved	in	a	text	file	called	dfilters.	Use	the	–R	parameter	to	apply	display	filters	while	using
Tshark.	Dumpcap	does	not	support	display	filters.

dissectors—Dissectors	are	the	Wireshark	software	elements	that	break	apart	applications	and	protocols
to	display	their	field	names	and	interpreted	values.	To	view	the	master	list	of	Wireshark	dissectors,	visit
anonsvn.wireshark.org/viewvc/,	select	a	Wireshark	version	and	navigate	to	the	epan/dissectors	directory.

DNS	(Domain	Name	System)—DNS	is	used	to	resolve	names	to	IP	addresses	and	much	more.	We	are
most	familiar	with	hosts	using	DNS	to	obtain	the	IP	address	for	a	host	name	typed	into	a	URL	field	of	a
browser,	but	DNS	can	provide	additional	information,	such	as	the	mail	exchange	server	or	canonical
name	(alias)	information.	Although	most	often	seen	over	UDP,	DNS	can	run	over	TCP	for
requests/responses	and	always	runs	over	TCP	for	DNS	zone	transfers	(transfer	of	information	between
DNS	servers).	The	capture	filter	syntax	for	DNS	traffic	is	port	53;	the	display	filter	syntax	is	simply	dns.

Domain	Name	System,	see	DNS

DSCP	(Differentiated	Services	Code	Point)—This	feature	adds	prioritization	to	the	traffic	using	the
DSCP	fields	in	the	IP	header.	To	determine	if	DSCP	is	in	use,	apply	a	display	filter	for	ip.dsfield.dscp	!=
0.

dumpcap—This	command-line	tool	is	referred	to	as	a	"pure	packet	capture	application"	and	is	included
with	Wireshark.	Dumpcap	is	used	for	packet	capture	by	Wireshark	and	Tshark.	Type	dumpcap	–h	at	the

http://anonsvn.wireshark.org/viewvc/

command	line	to	learn	what	options	are	available	when	running	dumpcap	alone.

Editcap—This	command-line	tool	is	included	with	Wireshark	and	is	used	to	split	trace	files	into	file	sets,
remove	duplicates,	and	alter	trace	file	timestamps.	To	see	the	options	available	with	Editcap,	type
editcap	–h	at	the	command	prompt.

Ethereal—This	is	the	former	name	of	the	Wireshark	project.	On	June	7,	2006,	Gerald	Combs	and	the
entire	development	team	moved	from	Ethereal	to	the	new	Wireshark	home.	This	name	change	was
prompted	by	a	trademark	issue	when	Gerald	Combs,	the	creator	of	Ethereal,	moved	to	his	new	job	at
CACE	Technologies.

Ethernet—Developed	at	Xerox	PARC	in	1973-1974,	Ethernet	defines	a	networking	technology	that
consists	of	a	physical	connection	to	a	shared	medium	(wire),	the	bit	transmission	mechanism,	and	the
frame	structure.

Ethernet	header—This	header	is	placed	in	front	of	the	network	layer	header	(such	as	IP)	to	get	a	packet
from	one	machine	to	another	on	a	local	network.	Once	the	Ethernet	header	is	placed	on	the	packet,	we
refer	to	it	as	a	frame.	The	common	Ethernet	header	format	is	Ethernet	II	and	contains	a	destination
hardware	address	(6	bytes),	source	hardware	address	(6	bytes)	and	Type	field	(2	bytes).	Wireshark	looks
at	the	Type	field	to	determine	which	dissector	should	receive	the	packet	next.	There	is	also	an	Ethernet
trailer	that	consists	of	a	4–byte	Frame	Check	Sequence	field.	See	also	Ethernet	trailer.

Ethernet	trailer—This	4-byte	trailer	is	added	to	the	end	of	a	packet	and	consists	of	a	Frame	Check
Sequence	field	(checksum	field).	Upon	receipt	of	a	frame,	each	device	strips	off	the	Ethernet	header	and
trailer	and	performs	a	checksum	calculation	on	the	packet	content.	The	receiving	device	compares	its
checksum	result	against	the	value	seen	in	the	checksum	field	to	determine	if	the	packet	is	corrupt.	Most
NICs	strip	off	the	Ethernet	trailer	before	handing	the	frame	to	the	computer/operating	system/Wireshark.

exclusion	filter—This	type	of	filter	either	drops	frames	during	the	capture	process	(exclusion	capture
filter)	or	removes	the	frame	from	view	(exclusion	display	filter).	An	example	of	an	exclusion	capture
filter	is	not	port	80.	An	example	of	an	exclusion	display	filter	is	!ip.addr==10.2.2.2.

Expert	Infos—This	Wireshark	window	displays	and	links	to	various	errors,	warnings,	notes,	and
additional	information	detected	in	the	trace	file.	This	window	also	displays	packet	comments.	You	can
launch	the	Expert	Infos	window	by	clicking	on	the	Expert	Infos	button	on	the	Status	Bar.

File	Transfer	Protocol,	see	FTP

FIN	(Finish)—This	bit	is	set	by	a	TCP	host	to	indicate	that	it	is	finished	sending	data	on	the	connection.
Once	both	sides	of	a	TCP	connection	send	a	packet	with	the	FIN	bit	set,	each	side	will	begin	timing	out
the	connection.

frame—The	term	used	to	define	a	unit	of	communications	that	consists	of	a	packet	surrounded	by	a	MAC-
layer	header	and	trailer.	Wireshark	numbers	each	frame	as	it	is	captured	or	opened	(in	the	case	of	a	saved
trace	file).	From	that	point	on,	however,	Wireshark	often	refers	to	these	frames	as	"packets"	(File	|	Export
Specified	Packets	for	example).

FTP	(File	Transfer	Protocol)—FTP	is	an	established	application	to	transfer	data	between	devices.	FTP
runs	over	TCP	using	port	21	as	a	default	for	the	command	channel	while	allowing	a	dynamic	port	number
to	be	assigned	to	the	data	channel.	The	capture	filter	for	FTP	command	channel	traffic	on	the	default	port
is	port	21.	The	display	filter	syntax	is	tcp.port==21.	Although	Wireshark	recognizes	the	filter	ftp,	this

filter	will	not	display	the	TCP	connection	establishment,	maintenance	or	tear	down	process.

GIMP	(GNU	Image	Manipulation	Program)	Graphical	Toolkit	(GTK)—This	is	the	toolkit	used	to
present	the	graphical	interface—the	windows,	dialogs,	buttons,	columns,	etc.

heuristic	dissector—A	heuristic	process	can	be	considered	"trial	and	error."	Wireshark	hands	packets
over	to	the	dissectors	that	match	the	port	in	use	(the	"normal	dissector").	If	Wireshark	does	not	have	a
normal	dissector,	it	hands	the	packet	off	to	a	heuristic	dissector.	The	heuristic	dissector	will	look	at	the
information	received	and,	by	trial	and	error,	try	to	see	if	it	fits	within	the	dissector's	definition	of	a	certain
protocol	or	application.	If	not,	it	sends	an	error	to	Wireshark	which	sends	the	packet	to	the	next	heuristic
dissector.

hex—Short	for	hexadecimal,	hex	refers	to	the	base	16	counting	system,	in	which	the	digits	are	0-9	and	A-
F.	The	Packet	Bytes	pane	displays	frame	contents	in	hex	format	on	the	left	and	ASCII	format	on	the	right.

hosts	file—Wireshark	refers	to	its	own	hosts	file	to	resolve	names	when	network	name	resolution	is
enabled.	This	file	is	located	in	the	Wireshark	program	file	directory.	As	of	Wireshark	1.9.0	(which	is	the
development	version	leading	to	Wireshark	1.10),	you	can	place	a	hosts	file	in	your	profile	directory	and
configure	Wireshark's	name	resolution	process	to	look	at	that	file	when	resolving	names.

HTTP	(Hypertext	Transfer	Protocol)—This	is	the	file	transfer	protocol	used	when	you	browse	a	web
site.	Typically	seen	over	TCP	port	80,	you	can	create	a	capture	filter	using	tcp	port	80	or	a	display	filter
using	tcp.port==80.	Although	you	could	use	an	http	display	filter,	that	filter	will	not	display	the	TCP
connection	establishment,	maintenance	or	tear	down	process	packets.

HTTPS	(Hypertext	Transfer	Protocol	Secure)—HTTPS	is	defined	as	the	secure	version	of	HTTP.	In
essence,	HTTPS	is	simply	HTTP	running	over	SSL/TLS	(Secure	Socket	Layer/Transport	Layer	Security),
which	are	cryptographic	protocols.	The	capture	filter	for	HTTPS	traffic	is	port	443	whereas	the	display
filter	is	ssl.

Hypertext	Transfer	Protocol,	see	HTTP

Hypertext	Transfer	Protocol	Secure,	see	HTTPS

IANA	(Internet	Assigned	Numbers	Authority)—Based	in	Marina	del	Rey,	California,	IANA	is
"responsible	for	the	global	coordination	of	the	DNS	Root,	IP	addressing,	and	other	Internet	protocol
resources."	For	network	analysts,	www.iana.org	is	an	invaluable	resource	for	field	values,	assigned
multicast	addresses,	assigned	port	numbers,	and	more.

ICMP	(Internet	Control	Message	Protocol)—This	protocol	is	used	as	a	messaging	service	on	a
network.	Most	people	are	familiar	with	the	ICMP-based	ping	operation.	ICMP	communications	should
always	be	considered	when	you	are	troubleshooting	network	performance.	The	capture	filter	and	display
filter	syntax	for	ICMP	is	just	icmp.

Internet	Assigned	Numbers	Authority,	see	IANA

Internet	Control	Message	Protocol,	see	ICMP

Internet	Protocol	(IPv4/v6)—IP	is	the	routed	protocol	(not	the	routing	protocol)	used	to	get	packets
through	an	internetwork.	The	capture	filter	syntax	for	IPv4	and	IPv6	are	ip	and	ip6,	respectively.	The
display	filter	syntax	for	IPv4	and	IPv6	are	ip	and	ipv6,	respectively.

Internet	Storm	Center	(ISC)—Created	by	SANS,	the	ISC	offers	daily	information	on	security	risks	and

http://www.iana.org/

vulnerabilities.	For	more	information,	visit	isc.sans.edu.

IP	address—This	address	identifies	a	single	host,	group	of	hosts,	or	all	hosts	on	a	network.	To	create	a
capture	filter	based	on	an	IPv4	address,	the	syntax	is	host	x.x.x.x.	The	syntax	of	an	IPv4	display	filter	is
ip.addr==x.x.x.x.	To	create	a	capture	filter	based	on	an	IPv6	address,	use	host
xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx.	For	an	IPv6	display	filter,	use
ipv6.addr==xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx.

ISATAP	(Intra-Site	Automatic	Tunnel	Addressing	Protocol)	traffic—	ISATAP	is	a	method	to
encapsulate	IPv6	packets	inside	IPv4	headers	to	be	forwarded	through	an	IPv4	network.

key	hosts—We	use	the	term	"key	hosts"	to	refer	to	the	devices	that	are	critical	on	the	network.	They	may
include	the	server	that	maintains	the	customer	database	or	the	CEO's	laptop.	You	define	which	host	should
be	tracked	and	analyzed	as	a	key	host.

libpcap—This	is	the	link-layer	driver	used	for	packet	capture	tools,	such	as	Wireshark.	There	are
numerous	other	tools	that	use	libpcap	for	packet	capture.	For	more	information,	see
sourceforge.net/projects/libpcap/.

link-layer	driver—This	is	the	driver	that	hands	frames	up	to	Wireshark.	WinPcap,	libpcap,	and	AirPcap
are	three	link	layer	drivers	used	with	Wireshark.

logical	operators—These	operators	are	used	to	expand	filters	to	determine	if	a	value	is	matched	in	some
form	or	another.	Examples	of	logical	operators	are	&&,	and,	||,	or,	!,	and	not.	An	example	of	logical
operator	use	is	tcp.analysis.flags	&&	ip.addr==10.2.2.2.

MAC	(Media	Access	Control)	address—This	address	is	associated	with	a	network	interface	card	or
chipset.	On	an	Ethernet	network,	MAC	addresses	are	6	bytes	long.	Switches	use	MAC	addresses	to
differentiate	and	identify	devices	connected	to	switch	ports.	They	use	these	addresses	to	make	forwarding
decisions.	To	build	a	capture	filter	based	on	a	MAC	address,	use	the	syntax	ether	host	00:08:15:00:08:15,
for	example.	To	build	a	display	filter	based	on	a	MAC	address,	use	eth.addr==00:08:15:00:08:15,	for
example.

manuf	file—This	Wireshark	file	contains	a	list	of	manufacturer	OUI	(Organizational	Unit	Identifiers)	as
defined	by	the	IEEE	(Institute	of	Electrical	and	Electronics	Engineers).	These	three-byte	values	are	used
to	distinguish	the	maker	of	a	network	interface	card	or	chipset.	In	Wireshark,	MAC	name	resolution	is	on
by	default	so	you	will	see	these	OUI	values	in	the	MAC	addresses	(such	as	Hewlett-_a7:bf:a3).	This
manuf	file	resides	in	the	Wireshark	program	file	directory.

Maximum	Segment	Size,	see	MSS

Media	Access	Control	address,	see	MAC	address

Mergecap—This	command-line	tool	is	used	to	merge	or	to	concatenate	trace	files.	If	you	have	a	set	of
trace	files,	but	you	want	to	create	a	single	IO	Graph	of	all	the	communications	in	those	trace	files,
consider	using	Mergecap	to	combine	the	files	into	a	single	file	before	opening	an	IO	Graph.	To	identify
the	options	available	with	Mergecap,	type	mergecap	–h.

metadata—This	is	basically	"extra	data."	In	Wireshark,	we	see	metadata	in	the	Frame	section	at	the	top
of	the	Packet	Details	pane.	Using	the	.pcapng	format,	you	can	also	add	your	own	metadata	through	trace
file	annotations	and	packet	annotations.

http://isc.sans.edu/
http://sourceforge.net/projects/libpcap/

MSS	(Maximum	Segment	Size)—This	value	defines	how	many	bytes	can	follow	a	TCP	header	in	a
packet.	During	the	TCP	handshake,	each	side	of	the	conversation	provides	their	MSS	value.	A	common
MSS	value	on	an	Ethernet	network	is	1,460.

multicast—This	is	a	type	of	address	that	targets	a	group	of	hosts.	At	the	MAC	layer,	most	multicast
addresses	begin	with	01:00:5e	while	IPv4	multicasts	begin	with	a	number	224	through	239	in	the	first	IP
address	byte	location.	An	example	of	an	IPv4	multicast	is	224.0.0.2,	which	is	targeted	at	all	local	routers.
IPv6	multicasts	have	the	preface	ff00::/8	(the	"8"	signifying	that	the	first	8	bits	are	the	bits	we	are
interested	in).

name	resolution—This	feature	is	used	to	associate	a	name	with	a	device,	network	interface	card/chip,	or
port.	Wireshark	supports	three	types	of	name	resolution:	MAC	name	resolution,	transport	name	resolution,
and	network	name	resolution.	MAC	name	resolution	is	on	by	default	and	resolves	the	first	three	bytes	of
hardware	addresses	to	a	manufacturer	name	(such	as	Apple_70:66:f5).	Transport	name	resolution	is	on	by
default	and	resolves	port	numbers	to	port	names	(such	as	port	80	resolved	to	http).	Network	name
resolution	is	off	by	default	and	resolves	an	IP	address	to	a	host	name	(such	as	74.125.19.106	resolving	to
www.google.com).	In	Wireshark,	when	you	enable	network	name	resolution,	Wireshark	may	generate	a
series	of	DNS	Pointer	queries	to	obtain	host	names.	As	of	version	1.9.0	(which	is	the	development
version	leading	to	Wireshark	1.10),	Wireshark	can	be	configured	to	look	at	a	hosts	file	for	network	name
resolution,	rather	than	generating	DNS	Pointer	queries.	You	can	even	have	a	separate	hosts	file	for	each
profile.

NAT	(Network	Address	Translation)—NAT	devices	alter	the	IP	address	of	hosts	while	maintaining	a
master	list	of	all	the	original	IP	addresses	and	the	new	addresses	in	order	to	forward	traffic	back	to	the
correct	address.	NAT	is	often	used	to	hide	internal	addresses	from	the	outside	world	or	enable	an
organization	to	use	simple	private	IP	addresses,	such	as	10.2.0.1.

NetBIOS	(Network	Basic	Input/Output	System)—This	is	the	session-level	protocol	used	by
applications,	such	as	SMB,	to	communicate	among	hosts	on	a	network,	typically	a	Microsoft-product
network.	In	Wireshark,	you	can	apply	a	display	filter	for	nbss	(NetBIOS	Session	Service)	or	nbns
(NetBIOS	Name	Service).

Network	Address	Translation,	see	NAT

Network	Basic	Input/Output	System,	see	NetBIOS

network	interface	card	(NIC)—This	card,	which	is	typically	just	a	chipset,	offers	the	physical
connection	to	the	network.	NICs	now	offer	greater	capability	than	just	applying	a	MAC	header	to	the
packets.	Some	hosts	now	support	task	offloading,	which	relies	on	the	NIC	for	various	functions	such	as
segmenting	TCP	data	and	applying	IP,	UDP,	and	TCP	checksum	values.	See	also	Task	offload.

Nmap—This	network	mapping	tool	was	created	by	Gordon	Lyons	(Fyodor)	to	discover	and	characterize
network	hosts.	For	more	information,	visit	nmap.org.

Packet	Bytes	pane—This	is	the	bottom	pane	displayed	by	default	in	Wireshark.	The	Packet	Bytes
pane	shows	the	contents	of	the	frame	in	both	hexadecimal	and	ASCII	formats.	When	you	click	on	a	field	in
the	Packet	Details	pane,	Wireshark	highlights	those	bytes	and	the	related	ASCII	characters	in	the	Packet
Bytes	pane.	To	toggle	this	pane	between	hidden	and	displayed,	select	View	|	Packet	Bytes.

packet	comments	(aka	packet	annotations)—As	of	Wireshark	1.8,	you	can	right-click	on	a	packet	in
the	Packet	List	pane	and	choose	Add	or	Edit	Packet	Comments.	This	feature	is	only	supported	in	trace

http://nmap.org/

files	saved	in	the	.pcapng	format.	Packet	comments	are	shown	above	the	Frame	section	in	the	Packet
Details	pane.	To	view	packet	comments,	open	the	Expert	Info	window	and	click	on	the	Packet
Comments	tab.	As	of	Wireshark	1.9.0	(which	is	the	development	version	leading	to	Wireshark	1.10),	you
can	export	all	trace	file	and	packet	comments	using	Statistics	|	Comments	Summary	|	Copy.

Packet	Details	Pane—This	is	the	middle	pane	displayed	by	default	in	Wireshark.	This	pane	shows	the
individual	fields	and	field	interpretations	offered	by	Wireshark.	When	you	select	a	frame	in	the	Packet
List	pane,	Wireshark	displays	that	frame's	information	in	the	Packet	Details	pane.	To	toggle	this	pane
between	hidden	and	displayed,	select	View	|	Packet	Details.	This	is	likely	a	pane	you	will	use	very	often
in	Wireshark	because	you	can	right-click	on	a	field	and	quickly	apply	a	display	filter	or	coloring	rule
based	on	that	field.

Packet	List	pane—This	is	the	top	pane	displayed	by	default	in	Wireshark.	This	pane	shows	a	summary
of	the	individual	frame	values.	When	you	select	a	frame	in	the	Packet	List	pane,	Wireshark	displays	that
frame's	information	in	the	Packet	Details	pane.	To	toggle	this	pane	between	hidden	and	displayed,	select
View	|	Packet	List.	This	is	likely	a	pane	you	will	use	very	often	in	Wireshark	as	you	can	right-click	on	a
frame	and	quickly	apply	a	conversation	filter	or	reassemble	communications	using	Follow	TCP	stream,
Follow	UDP	stream,	or	Follow	SSL	stream.

packet—This	is	the	term	used	to	describe	the	elements	inside	a	MAC	frame.	Once	you	strip	off	the	frame,
you	are	looking	at	a	packet.	We	use	this	term	loosely	in	analysis.	Although	Wireshark	displays	frames,	we
often	refer	to	them	as	"packets".

.pcap	(Packet	Capture)—This	trace	file	format	is	the	default	format	for	earlier	versions	of	Wireshark
(before	Wireshark	1.8).	This	format	is	also	referred	to	as	the	tcpdump	or	libpcap	trace	file	format.

.pcapng,	also	.pcap-ng	(.pcap	Next	Generation)—This	trace	file	format	is	the	successor	to	the	.pcap
format.	This	new	format	facilitates	saving	metadata,	such	as	packet	and	trace	file	comments,	local
interface	details,	and	local	IP	address,	with	a	trace	file.	For	more	information	about	the	.pcapng	format,
see	wiki.wireshark.org/Development/PcapNg.

PCRE	(Perl-Compatible	Regular	Expressions)—Regular	expressions	is	a	search-pattern	language	used
to	match	strings	of	characters,	numbers,	or	symbols.	"Perl-Compatible"	defines	the	flavor	of	regular
expressions	that	Wireshark	supports.	See	also	Regular	expressions	(regex).

Perl-Compatible	Regular	Expressions,	see	PCRE

Per-Packet	Interface,	see	PPI

Pilot,	see	Cascade	Pilot®

port	spanning—This	process	is	used	to	configure	a	switch	to	copy	the	traffic	to	and	from	one	or	more
switch	ports	down	the	port	to	which	Wireshark	is	connected.	Not	all	switches	support	this	capability.
Some	people	refer	to	this	as	port	mirroring.	Note	that	port	spanned	switches	will	not	forward	corrupt
packets	to	Wireshark.	See	also	Tap.

PPI	(Per-Packet	Interface)—PPI	is	an	802.11	header	specification	that	provides	out-of-band
information	in	a	pseudoheader	that	is	prepended	to	the	802.11	header.	Used	by	AirPcap	adapters,	the	PPI
pseudoheader	includes	channel-frequency	information,	signal	power,	noise	level,	and	more.

preferences	file—This	file	contains	the	protocol	preference	settings,	name	resolution	settings,	column
settings,	and	more.	Each	profile	has	its	own	preferences	file,	which	is	contained	in	the	personal

http://wiki.wireshark.org/Development/PcapNg

configurations	folder.

Prepare	a	Filter—This	task	can	be	performed	by	right-clicking	on	a	packet	in	the	Packet	List	pane.
Prepare	a	Filter	creates,	but	does	not	apply,	a	display	filter	based	on	the	selected	element.	See	also
Apply	as	Filter.

profiles—Profiles	contain	the	customized	configurations	for	Wireshark.	There	is	a	single	profile
available	on	a	new	Wireshark	system—the	Default	profile.	The	current	profile	in	use	is	displayed	in	the
right	side	of	the	Status	Bar.	To	switch	between	profiles,	click	on	the	Profile	area	in	the	Status	Bar.	To
create	a	new	profile,	right-click	on	the	Profile	area.

Protocol	Data	Unit	(PDU)—This	is	a	set	of	data	transferred	between	hosts.	In	Wireshark,	you	will	see
[TCP	segment	of	a	reassembled	PDU]	when	you	allow	the	TCP	subdissector	to	reassemble	TCP	streams.
In	essence,	these	packets	contain	segments	of	a	file	that	is	being	transferred.

Protocol	Hierarchy	window—This	window	breaks	down	the	traffic	according	to	the	protocols	in	use	and
provides	details	regarding	packet	percentages	and	byte	percentages.	This	window	is	available	under	the
Statistics	menu	option.	Watch	for	unusual	protocols	or	applications	or	the	dreaded	"data"	under	TCP,
UDP,	or	IP.	This	designation	means	that	Wireshark	does	not	recognize	the	traffic,	which	is	unusual
considering	the	number	of	dissectors	included	in	Wireshark.

protocol	preferences—These	preferences	define	how	Wireshark	handles	various	protocols	and
applications.	Protocol	preferences	are	set	by	right-clicking	on	a	protocol	in	the	Packet	Details	pane,	by
selecting	Edit	|	Preferences	from	the	menu	or	by	clicking	the	Edit	Preferences	button	on	the	main
toolbar.

QoS	(Quality	of	Service)—This	term	refers	to	a	method	of	prioritizing	traffic	as	it	travels	through	a
network.	QoS	settings	can	be	defined	on	interconnecting	devices	(forward	web	browsing	traffic	before
email	traffic,	for	example)	or	by	an	application.	When	defined	by	an	application,	the	DSCP	bits	can	be	set
to	prioritize	the	traffic	over	other	traffic.	See	also	DSCP.

Quality	of	Service,	see	QoS

Regular	Expressions	(Regex)—Regex	is	a	search-pattern	language	used	to	match	strings	of	characters,
numbers,	or	symbols.	Wireshark	uses	Perl-Compatible	Regular	Expressions	(PCRE)	when	you	use	the
matches	operator	in	display	filters.	For	more	information	on	regular	expressions,	see	www.regular-
expressions.info.	See	also	PCRE.

relative	start	(Rel.Start)—This	value	is	shown	in	the	Conversations	window	and	indicates	the	first	time
this	conversation	was	seen	in	the	trace	file.	You	may	need	to	expand	the	Conversations	window	to	see	this
column.	The	time	is	based	on	seconds	since	the	first	packet	in	the	trace	file.

remote	capture—This	term	describes	the	process	of	capturing	traffic	at	one	location	and	analyzing	it	at
another	location.	WinPcap	includes	a	remote	capture	tool	(rpcapd.exe)	that	Wireshark	can	access	through
the	Capture	Options	window	(Manage	Interfaces).

RST	(Reset)—This	bit	is	set	by	a	host	to	terminate	a	TCP	connection.	Once	this	bit	has	been	set	in	an
outbound	packet,	the	sender	cannot	send	any	further	data	on	that	connection.	In	a	typical	TCP	connection
termination	process,	each	side	of	the	connection	sends	a	packet	with	the	RST	bit	set	and	the	connection	is
immediately	closed.

Server	Message	Block,	see	SMB

http://www.regular-expressions.info/

services	file—This	file	contains	a	list	of	port	numbers	and	service	names.	All	TCP/IP	hosts	have	a
services	file	and	Wireshark	has	its	own	services	file	as	well.	This	file	resides	in	the	Wireshark	program
file	directory.	When	transport	name	resolution	is	enabled,	Wireshark	replaces	port	numbers	with	service
names.	For	example,	port	80	would	be	replaced	with	"http."	You	can	edit	this	file	if	you	do	not	like	the
service	names	displayed.

Simple	Network	Management	Protocol,	see	SNMP

SMB	(Server	Message	Block)—Also	referred	to	as	Common	Internet	File	System	(CIFS),	SMB	is	an
application	layer	protocol	used	to	provide	network	access,	file	transfer,	printing,	and	other	functions	on	a
Microsoft-based	network.

SNMP	(Simple	Network	Management	Protocol)—This	device	management	protocol	requires	that	a
managed	device	maintain	a	database	of	managed	items.	Managing	hosts	view	and/or	edit	that	database.
You	may	see	SNMP	traffic	flowing	between	network	hosts	and	network	printers,	which	often	have	SNMP
enabled	to	track	information	such	as	ink	levels,	paper	levels,	and	more.	To	filter	on	SNMP	traffic	use	the
capture	filter	port	161	or	port	162	or	the	display	filter	snmp.

Snort—Snort	is	a	Network	Intrusion	Detection	System	(NIDS)	that	was	created	in	1998	by	Martin
Roesch	and	is	currently	maintained	by	Sourcefire.	Snort	relies	on	a	set	of	rules	to	identify	and	generate
alerts	on	network	scans	and	attack	traffic.	For	more	information,	see	snort.org.

Stream	index	number—This	number	is	applied	to	each	TCP	conversation	seen	in	the	trace	file.	The	first
Stream	index	number	is	set	at	0.	When	you	right-click	on	a	TCP	communication	in	the	Packet	List	pane
and	choose	Follow	TCP	stream,	Wireshark	applies	a	display	filter	based	on	this	Stream	index	number
(for	example,	tcp.stream==3.

stream	reassembly—This	is	the	process	of	reassembling	everything	after	the	transport-layer	header
(TCP	or	UDP)	enabling	you	to	clearly	read	through	the	requests	and	replies	in	a	conversation.
Communications	from	the	first	host	seen	are	colored	red;	communications	from	the	second	host	seen	are
colored	blue.

subdissector—This	is	a	dissector	that	is	called	by	another	dissector.	You	will	see	this	term	when	you
view	TCP	preferences	(Allow	subdissector	to	reassemble	TCP	streams).	In	the	case	of	web	browsing
traffic,	the	HTTP	dissector	is	a	subdissector	of	the	TCP	dissector.

subnet—This	term	defines	a	subset	of	a	network	and	is	applied	by	lengthening	network	masks.	For
example,	if	you	want	to	create	two	subnets	out	of	a	single	network,	network	10.2.0.0/16	for	example,
lengthen	the	subnet	to	/24	(24-bits)	and	assign	10.2.1.0/24	to	some	hosts	and	10.2.2.0/24	to	other	hosts.
The	network	mask	indicates	that	we	have	two	networks	now.

SYN	(Synchronize	Sequence	Numbers)—This	bit	is	set	in	the	first	two	packets	of	the	TCP	handshake	to
synchronize	the	initial	sequence	numbers	(ISNs)	from	each	TCP	peer.	You	can	use	a	display	filter	based
on	this	bit	to	view	the	first	two	packets	of	each	handshake	(tcp.flags.syn==1)	which	can	be	used	to
determine	the	round	trip	time	between	hosts.

TAP,	aka	tap	(Test	Access	Port)—These	devices	are	used	to	intercept	network	communications	and
copy	the	traffic	down	a	monitor	port.	Basic	taps	do	not	make	any	forwarding	decisions	on	traffic	and	offer
a	transparent	view	of	network	communications.	NetOptics	is	a	company	that	makes	network	taps	(see
www.netoptics.com).	See	also	port	spanning.

http://snort.org/
http://www.netoptics.com/

task	offload—This	process	offloads	numerous	processes	to	the	network	interface	card	to	free	up	the
host's	CPU	for	other	tasks.	Task	offload	can	affect	your	analysis	session	when	checksums	are	calculated
by	the	network	interface	card	on	a	host	upon	which	you	are	running	Wireshark.	Since	checksum	values
haven't	been	calculated	yet,	they	are	incorrect	at	the	point	of	capture.	If	you	enable	IP,	UDP,	or	TCP
checksum	validation,	or	you	have	the	Checksum	Errors	coloring	rule	enabled,	you	may	see	numerous	false
positives	caused	by	task	offload	of	the	checksum	calculation.

TCP/IP	(Transmission	Control	Protocol/Internet	Protocol)—This	term	refers	to	an	entire	suite	of
protocols	and	applications	that	provide	connectivity	among	worldwide	computer	systems.	The	term
"TCP/IP"	refers	to	more	than	TCP	and	IP,	it	refers	to	UDP,	ICMP,	ARP,	and	more.

Teredo	IPv6	traffic—Teredo	is	a	tunneling	method	that	encapsulates	an	IPv6	header	inside	a	UDP
packet.	This	technology	was	developed	to	assist	with	crossing	Network	Address	Translation	(NAT).
Teredo	is	covered	in	RFC	4380,	Teredo:	Tunneling	IPv6	over	UDP	through	Network	Address
Translations	(NATs).

TFTP	(Trivial	File	Transfer	Protocol)—This	file	transfer	protocol	runs	over	UDP	offering	minimal	file
transfer	functionality.	Most	commonly,	TFTP	uses	port	69,	but	you	must	keep	in	mind	that	many
applications	can	be	configured	to	run	over	non-standard	port	numbers.	Unexpected	TFTP	traffic	can	be	a
symptom	of	a	security	breach	on	your	network.

Trivial	File	Transfer	Protocol,	see	TFTP

Time	to	Live,	see	TTL

trace	file—This	general	term	refers	to	all	files	that	contain	network	traffic,	regardless	of	the	format	of	the
file.	Wireshark	currently	uses	the	.pcapng	trace	file	format,	but	it	can	understand	most	other	common	trace
file	formats.	Trace	files	generally	include	a	file	header	(which	contains	information	about	the	entire	trace
file,	including	the	indication	of	the	trace	file	format	in	use)	and	packet	headers	that	include	metadata	(such
as	comments)	about	individual	packets.

Transport	Layer	Security,	see	TLS

TLS	(Transport	Layer	Security)—TLS	is	a	cryptographic	protocol	based	on	Secure	Socket	Layer
(SSL).	When	analyzing	TLS	traffic,	you	can	look	at	the	initial	TLS	handshake	packets	to	identify
connection	establishment	problems.	To	decrypt	this	traffic,	you	must	have	the	appropriate	decryption	key.
TLS	preferences	are	configured	under	the	SSL	preference	area	in	Wireshark.	To	capture	TLS/SSL-based
traffic,	use	a	port-based	capture	filter,	such	as	port	443.	The	display	filter	syntax	for	TLS/SSL-based
traffic	is	SSL.

Tshark—This	command-line	tool	can	be	used	to	capture,	display,	and	obtain	basic	statistics	on	live
traffic	or	saved	trace	files.	Tshark	relies	on	dumpcap	to	actually	capture	the	traffic.	By	far	the	most
feature-rich	version	of	the	command-line	capture	tools,	you	can	type	tshark	-h	to	find	the	list	of	available
Tshark	parameters.

Time	to	Live	(TTL)—This	IP	header	field	is	decremented	by	each	router	as	it	is	forwarded	along	a
network	path.	If	a	packet	arrives	at	a	router	with	a	TTL	value	of	1,	it	cannot	be	forwarded	because	you
cannot	decrement	the	TTL	to	zero	and	forward	the	packet.	The	packet	will	be	discarded.

UDP	(User	Datagram	Protocol)—This	connectionless	transport	protocol	is	used	by	many	basic	network
communications,	including	all	broadcasts,	all	multicasts,	DHCP,	DNS	requests,	and	more.	The	capture

filter	and	display	filter	syntax	to	capture	UDP	is	udp.

URI	(Uniform	Resource	Indicator)—This	term	defines	the	actual	element	being	requested	in	an	HTTP
communication.	For	example,	when	you	analyze	a	web	browsing	session,	you	might	see	a	request	for	the
"/"	URI.	This	"/"	is	a	request	for	the	default	page	(index.html,	for	example).	To	build	a	display	filter	to
show	any	packets	that	contain	a	URI,	use	http.request.uri.

User	Datagram	Protocol,	see	UDP

WinPcap	(Windows	Packet	Capture)—This	Windows-specific	link-layer	driver	is	used	by	Wireshark
to	capture	traffic	on	a	wired	network.	Originally	created	by	Loris	Degioanni.	WinPcap	is	the	industry
leading	utility	for	various	network	tools.	For	more	information,	see	www.winpcap.org.

Wiretap	Library—This	library	gives	you	the	raw	packet	data	from	trace	files.	Wireshark's	Wiretap
Library	understands	many	different	trace	file	formats	and	can	be	seen	when	you	select	File	|	Open	and
click	the	drop-down	arrow	next	to	Files	of	Type.

WLAN	(Wireless	Local	Area	Network)—This	term	describes	networks	that	rely	on	RF	(radio
frequency)	media	to	communicate	between	hosts.	Wireshark	contains	dissectors	for	various	WLAN	traffic
elements.	The	AirPcap	adapter	is	a	great	adapter	for	capturing	WLAN	traffic.

http://www.winpcap.org/

$100	Off	All	Access	Pass	(AAP)	Online	Training
Register	Online:
Login	at	https://www.lcuportal2.com.

Purchase	AAP:	
Use	the	discount	code	AAPWSSKILLS	for	$100	off	the	first	year	membership.

Enroll	in	Classes:	
View	available	course	information	(including	credit	hours)	and	register	for	your	online	courses.	You	can
enter	a	course	immediately	after	registering.

My	Classes:	
View	the	list	of	courses	for	which	you	are	registered	and	your	status	(completed	or	in	progress).

My	Transcript	
Print	or	email	your	training	transcript	(in	progress	and	completed	courses)	including	course	CPE	credits
and	completion	dates.

AAP	Special	Events:	
Register	for	live	AAP	events	or	access	AAP	event	handouts	from	past	or	upcoming	events.

SAMPLE	COURSE	LIST

Core	1-Wireshark	Functions	&	TCP/IP
Core	2-Troubleshoot/Secure	Networks	with	Wireshark
Combo	Core	1	and	2	Update
Wireshark	Jumpstart	101
Hacked	Hosts
Analyze	and	Improve	Throughput
Top	10	Reasons	Your	Network	is	Slow
TCP	Analysis	In-Depth
DHCP/ARP	Analysis
Nmap	Network	Scanning	101
WLAN	Analysis	101
Wireshark	201	Filtering
New	Wireshark	Features
ICMP	Analysis
Analyzing	Google	Secure	Search
Slow	Networks—NOPs/SACK
TCP	Vulnerabilities	(MS09-048)
Packet	Crafting	to	Test	Firewalls
Capturing	Packets	(Security	Focus)
Troubleshooting	with	Coloring
Tshark	Command-Line	Capture
AAP	Event:	Analyzing	the	Window	Zero	Condition
Trace	File	Analysis—et	1
Trace	File	Analysis—et	2
Trace	File	Analysis—Set	3

https://www.lcuportal2.com

Whiteboard	Lecture	Series	1
Translate	Snort	Rules	to	Wireshark
...and	more

	
We	also	offer	customized	onsite	and	online	training.	Visit	www.chappellU.com	for	sample	course	outlines
and	more	information.	Contact	us	at	info@chappellU.com	if	you	have	questions	regarding	your	All
Access	Pass	membership.

http://www.chappellu.com/
mailto:info@chappellU.com?subject=All%20Access%20Pass%20Question%20-%20linked%20from%20101%20book

[1]					SecTools.Org:	Top	125	Network	Security	Tools,	sectools.org.

[2]					eWEEK/eWEEK	Labs,	May	28,	2012,	see	www.eweek.com/c/a/Linux-and-Open-Source/The-
Most-Important-OpenSource-Apps-of-All-Time/11/

[3]					See	portableapps.com	for	more	information	about	this	platform.

[4]					See	www.wireshark.org/download/automated/sloccount.txt	for	the	current	SLOCCount	estimates.

[5]					Many	Wireshark	web	page	names	include	upper	case	and	lower	case	characters.	Use	the	proper
case	or	you	will	receive	the	dreaded	"im	in	ur	servr	sniffin	ur	paketz"	cat	(404	error	message).

[6]					A	true	switch	does	not	offer	any	routing	functionality.	The	only	purpose	of	a	true	switch	is	to	learn
what	machines	are	connected	to	it	(based	on	MAC	addresses)	and	forward	traffic	accordingly.

[7]					One	other	item	can	be	sent	down	your	switch	port—traffic	to	an	unknown	MAC	address.	If	all	goes
well,	this	should	rarely	happen.	We	have	resolution	processes	to	ensure	we	know	target	MAC	addresses
and	we	should	only	see	MAC	addresses	that	are	in	use	on	the	network.

[8]					Note	that	the	URL	is	case	sensitive.	If	you	browse	to	wiki.wireshark.org/ethernet	(all	lower	case),
you	will	see	a	message	indicating	that	"This	page	does	not	yet	exist."

[9]					We	hid	columns	at	various	points	in	this	book	to	enable	us	to	show	more	information	contained	in
other	columns.

[10]				This	will	be	an	important	task	when	you	create	display	filters	later	in	this	book.

[11]				This	trace	file—and	all	the	other	trace	files	mentioned	in	this	book—are	available	at
www.wiresharkbook.com.

[12]				Your	own	web	browsing	traffic	to	www.google.com	may	be	quite	different.	If	you	had	recently
accessed	the	site,	your	browser	will	have	parts	of	the	Google	web	site	in	cache.	You	won't	see	those
elements	being	sent	from	the	Google	server.

[13]				If	you	see	[TCP	segment	of	a	reassembled,	PDU]	instead	of	OK	in	frame	10,	don't	worry.	By
default,	Wireshark	shows	the	reassembly	message	when	the	OK	response	includes	part	of	the	data	being
sent	to	the	client.	You	will	work	with	this	setting	in	Chapter	1.

[14]	See	isc.sans.edu/ipinfo.html?ip=183.63.31.122.

[15]				As	of	Wireshark	1.9.0	(which	is	the	development	version	leading	to	Wireshark	1.10),	network
name	resolution	can	be	performed	by	referring	to	a	Wireshark	hosts	file	and	looking	at	the	DNS	packets
in	a	trace	file.	If	you	want	Wireshark	to	generate	DNS	PTR	queries	to	resolve	names,	use	the	Use
external	network	name	resolver	setting	(enabled	by	default).	You	can	also	enable	Use	hosts	file	from
profile	dir	only	to	maintain	separate	hosts	files	for	each	of	your	customized	Wireshark	profiles.

[16]				The	remaining	labs	in	this	book	assume	you	have	successfully	completed	this	lab.

[17]				You	can	create	new	profiles	based	on	existing	profiles	using	Edit	|	Configuration	Profiles	|	Copy
or	right-click	on	the	Profile	area	on	the	Status	Bar,	select	New	and	select	an	existing	profile	from	the
Create	From	drop-down	list.	You	will	create	a	new	profile	based	on	the	Default	profile	in	Lab	7.

[18]				Don't	laugh	at	this	one—I've	seen	this	happen	before.	A	slight	misconfiguration	among	the	IT	team

http://sectools.org
http://www.eweek.com/c/a/Linux-and-Open-Source/The-Most-Important-OpenSource-Apps-of-All-Time/11/
http://portableapps.com
http://www.wireshark.org/download/automated/sloccount.txt
http://www.wiresharkbook.com/
http://isc.sans.edu/ipinfo.html?ip=183.63.31.122

and	an	energetic	intern	dragged	this	network	to	the	ground.	It	began	with	big	path	delays	and	then
deteriorated	to	monstrous	packet	loss.	I	think	the	intern	makes	balloon	animals	at	the	mall	for	a	living
now.

[19]				Ok,	walking	probably	isn't	an	option—unless	you	are	trying	to	distract	yourself	from	the
ridiculously	long	wait	time	you	will	have	trying	to	download	a	file	from	this	HTTP	server.	You	folks	in
Australia—I	love	ya,	but	your	Internet	links	are	horrid.	You're	accustomed	to	these	kinds	of	latency	times.

[20]				If	packets	432	and	20	appear	as	[TCP	segment	of	a	reassembled	PDU],	you	need	to	change	your
TCP	preference	settings	to	disable	Allow	subdissector	to	reassemble	TCP	streams.	Select	Edit	|
Preferences	|	(+)	Protocols	|	TCP	to	set	this.

[21]				The	term	"tap"	is	used	as	a	general	term	for	the	acronym	TAP.

[22]				The	signal	strength	information	is	not	contained	in	a	field	of	the	802.11	header,	so	this	information
must	be	added	by	the	adapter	or	a	special	driver.

[23]				Since	Dumpcap	is	the	tool	that	is	capturing	traffic	for	Wireshark,	it	is	actually	Dumpcap	that	can	be
overwhelmed	if	traffic	is	arriving	faster	to	Dumpcap	than	Wireshark	is	picking	it	up	from	Dumpcap.

[24]				I	was	fortunate	to	sit	with	Loris	during	the	initial	design	phase	of	Cascade	Pilot	before	it	even	had
an	interface.	The	underlying	architecture	was	sleek	and	sophisticated.	Watching	the	product	take	shape
and	discussing	potential	features	was	a	fabulous	experience.	

[25]				I	generally	tell	folks	to	avoid	capture	filters	whenever	possible.	This	is	because	you	can't	get	those
packets	back	after	you	filter	them	out.	An	ideal	time	to	use	capture	filters	is	when	Dumpcap	can't	keep	up
with	the	traffic.	So	let's	lighten	up	the	load	heading	to	the	Capture	Engine.

[26]				If	you	have	a	dual-stack	host,	it	is	much	more	effective	to	make	a	single	filter	based	on	your	MAC
address	than	to	make	a	more	complex	filter	based	on	your	IPv4	and	IPv6	addresses.

[27]				On	a	Windows	host	select	Start	and	select	the	Command	Prompt	from	the	program	list	or	type
cmd	in	the	file	search	area.	On	a	MAC	OS	X	host,	open	Applications	|	Utilities	|	Terminal.	There	are
various	terminal	applications	available	on	Linux	hosts—look	for	terminal	or	Xterm,	for	example.

[28]				Watch	out	for	VoIP	display	filters—for	some	reason	there	are	several	VoIP-related	display	filters
that	use	upper	case	and	lower	case	characters.

[29]				Watch	out	when	using	display	filters	based	on	a	TCP-based	application	name.	Running	a	filter	for
"http"	will	not	show	you	the	entire	picture	of	a	browsing	session.	For	more	information,	see	Be	Cautious
Using	a	TCP-based	Application	Name	Filter.

[30]				You	will	learn	to	use	the	right-click	Prepare	a	Filter	and	Apply	as	Filter	features	to	create	a	filter
based	on	a	field	name	and	value	in	Quickly	Filter	on	a	Field	in	a	Packet.

[31]				Be	careful	using	the	!=	operator.	Refer	to	Why	didn't	my	ip.addr	!=	filter	work?	for	more	details
on	issues	with	this	operator.

[32]				Yes—that	is	the	same	"Hearst"	as	Patty	Hearst,	the	famous	Symbionese	Liberation	Army	(SLA)
bank	robber/millionaire	socialite.	The	Hearst	Corporation	was	founded	by	Patty	Hearst's	grandfather,
William	Randolph	Hearst.

[33]				We	could	have	also	used	http.request.method	contains	"POST".

[34]				You	must	enable	Wireshark's	network	name	resolution	process	(Edit	|	Preferences	|	Name
Resolution)	in	order	to	use	this	display	filter.

[35]				You	do	not	need	to	clear	the	previous	filter	because	the	new	filter	will	replace	the	existing	one.

[36]				This	is	not	a	typo.	The	HTTP	specifications	spell	Referer	this	way	(with	a	missing	"r").

[37]				The	new	display	filter	title	"Wireshark	101	Book	Sample	Display	Filters"	uses	the	filter	string
frame.	It	will	not	filter	anything	out	of	view	if	someone	clicks	on	it	by	mistake.

[38]				X11	is	a	software	and	network	protocol	that	provides	a	graphical	interface.

[39]				We	are	using	the	"S-"	to	indicate	this	is	a	security	concern.	This	is	just	for	your	information	when
you	see	what	coloring	rules	are	associated	with	frames.

[40]				Use	a	logarithmic	scale	when	you	are	plotting	disparate	number	values.	You	will	practice	your
logarithmic	graphing	skills	in	Lab	36.

[41]				The	MaxMind	web	site	underwent	a	complete	redesign	during	development	of	this	book.	The
direct	link	to	the	GeoLite	database	files	is	www.maxmind.com/en/opensource,	but	this	may	change.	Just
look	around	their	web	site	for	any	reference	to	the	GeoIP	database	and	the	GeoLite	files.

[42]				The	only	way	to	really	know	what	is	"unusual"	is	to	know	what	is	usual.	Capture	and	analyze	your
traffic	to	learn	what	applications	are	typically	seen	on	your	network.

[43]				For	those	of	you	reading	the	paperback	book	version,	you	will	need	to	open	the	trace	file	in
Wireshark	to	see	the	colors.	Printing	color	books	is	still	cost-prohibitive,	so	the	paperback	is	in	black	and
white.	However,	the	eBook	versions	are	in	color.

[44]				Be	sure	to	enable	the	Allow	subdissector	to	reassemble	TCP	streams	TCP	preference	setting
before	attempting	reassembly.

[45]				Wireshark	automatically	detects	if	you	right-clicked	on	a	TCP,	UDP	or	SSL	stream.	SSL	streams
must	be	decrypted	to	be	reassembled	and	viewed.

[46]				If	you	captured	the	browsing	session	beginning	with	the	TCP	handshake,	the	client	communications
will	be	in	red	and	the	server	communications	will	be	in	blue.

[47]				You	must	configure	Wireshark	with	a	decryption	key	in	the	SSL	preferences	area	in	order	to	follow
SSL	streams	and	view	the	decrypted	traffic.

[48]				If	you	did	not	save	your	Host	column,	return	to	Lab	15	and	follow	the	steps	to	create	the	column
again.

[49]				As	of	the	writing	of	this	book,	Network	Miner	could	not	import	.pcapng	files.	To	convert	a	.pcapng
file	to	a	.pcap	file	format,	open	the	file	and	select	File	|	Save	As	and	choose	the	Wireshark/tcpdump/...	-
libpcap	format.	Use	the	.pcap	extension	when	you	name	your	file.

[50]				The	Trace	File	Annotation	button	will	not	appear	if	you	are	looking	at	a	file	saved	in	.pcap
format.	Select	File	|	Save	As	to	save	the	file	in	pcapng	format	if	you	wish	to	use	trace	file	or	packet
annotations.

[51]				Note	that	the	Expert	Infos	window	shown	displays	the	Expert	LEDs.	This	is	a	User	Interface
preference	setting	that	can	help	you	become	accustomed	to	the	Expert	Infos	color	coding	system.

http://www.maxmind.com/en/opensource

[52]				For	step-by-step	instructions	for	adding	the	Wireshark	program	directory	to	your	path,	perform	a
Google	search	for	"add	directory	to	path	for	<operating	system>."

[53]				Be	certain	to	add	the	Wireshark	program	directory	to	your	path	as	mentioned.

[54]				You	only	need	to	use	quotes	around	a	file	name	if	it	contains	spaces.	Adding	quotes	around	all	file
names	may	be	a	good	habit	to	get	into,	however.

[55]				We	keep	mentioning	this—have	you	done	it	yet?

[56]				Note	that	the	Capture	output	option	area	implies	that	you	must	use	a	ring	buffer.	You	don't.	We	will
just	use	the	duration:NUM(secs)	capability	of	this	parameter.

[57]				You	do	not	need	a	space	between	the	–i	parameter	and	the	interface	number.

[58]				Time	to	get	a	lock	on	your	door,	eh?

	Table of Contents
	About this Book
	Chapter 0 Skills: Explore Key Wireshark Elements and Traffic Flows
	Chapter 1 Skills: Customize Wireshark Views and Settings
	Chapter 2 Skills: Determine the Best Capture Method and Apply Capture Filters
	Chapter 3 Skills: Apply Display Filters to Focus on Specific Traffic
	Chapter 4 Skills: Color and Export Interesting Packets
	Chapter 5 Skills: Build and Interpret Tables and Graphs
	Chapter 6 Skills: Reassemble Traffic for Faster Analysis
	Chapter 7 Skills: Add Comments to Your Trace Files and Packets
	Chapter 8 Skills: Use Command-Line Tools to Capture, Split, and Merge Traffic
	Appendix A: Challenge Answers
	Appendix B: Trace File Descriptions
	Network Analyst's Glossary
	All Access Pass (AAP) Online Training Offer

